

Teaching Guide							
Identifying Data				2013/14			
Subject (*)	Paleobioloxía				Code	610G02043	
Study programme	Grao	en Bioloxía					
			Desci	riptors			
Cycle		Period	Year			Type Credits	
Graduate		1st four-month period	Foi	urth		Optativa	6
Language	Spani	shEnglish					
Prerequisites							
Department	Cienc	ias da Navegación e da Terra					
Coordinador	Bao Casal, Roberto			E-mail		roberto.bao@udc.es	
Lecturers	Bao Casal, Roberto		E-mail roberto.bao@udc.es		S		
	Grandal D`Anglade, Aurora			aurora.grandal@udc.es		lc.es	
Web	campusvirtual.udc.es/moodle/						
General description	Esta asignatura estuda os procesos biolóxicos que operan a escala xeolóxica de tempo. Despois de unha introducción as						
	características principais do rexistro fósil e a súa representatividade, se estudan aspectos relativos a análise da forma						
	orgánica, o papel do rexistro fósil no desenvolvemento da Teoría Evolutiva moderna e a análise de procesos paleoecolóxicos						
	e paleobioxeográficos dende una perspectiva evolutiva. No último bloque da materia se pretende obter unha visión da						
	evolución da diversidade da vida ó longo do tempo xeolóxico no contexto dun planeta cambiante, e relacionar os						
	coñecementos xa adquiridos, cara a interpretación da Terra como Sistema.						
	O enfoque da asignatura é eminentemente conceptual, deixando os aspectos mais puramente descriptivos (Paleontoloxía						
	Sistemática) para as prácticas de laboratorio.						

	Study programme competences
Code	Study programme competences
A1	Recoñecer distintos niveis de organización nos sistemas vivos.
A2	Identificar organismos.
A3	Recoñecer, obter, analizar e interpretar evidencias paleontológicas.
A6	Catalogar, avaliar e xestionar recursos naturais.
A22	Describir, analizar, avaliar e planificar o medio físico.
A27	Dirixir, redactar e executar proxectos en Bioloxía.
A29	Impartir coñecementos de Bioloxía.
B1	Aprender a aprender.
B2	Resolver problemas de forma efectiva.
B3	Aplicar un pensamento crítico, lóxico e creativo.
B8	Sintetizar a información.
B9	Formarse unha opinión propia.
B10	Exercer a crítica científica.
B11	Debater en público.
C1	Expresarse correctamente, tanto de forma oral coma escrita, nas linguas oficiais da comunidade autónoma.
C3	Utilizar as ferramentas básicas das tecnoloxías da información e as comunicacións (TIC) necesarias para o exercicio da súa profesión e
	para a aprendizaxe ao longo da súa vida.
C4	Desenvolverse para o exercicio dunha cidadanía aberta, culta, crítica, comprometida, democrática e solidaria, capaz de analizar a
	realidade, diagnosticar problemas, formular e implantar solucións baseadas no coñecemento e orientadas ao ben común.
C6	Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.
C7	Asumir como profesional e cidadán a importancia da aprendizaxe ao longo da vida.
C8	Valorar a importancia que ten a investigación, a innovación e o desenvolvemento tecnolóxico no avance socioeconómico e cultural da
	sociedade.

Learning outcomes			
Subject competencies (Learning outcomes)	Study	y progra	amme
			ces
To understand the concept of deep (geologic) time	A3	B9	C6
	A22	B10	
To understand the processes of fossilization and the biases of the fossil record as indicator of ancient biospheres	A2	B1	C1
	A27	B3	C6
			C7
			C8
To understand how biological processes occuring at geological time scales, such as evolution or mass extinctions, cannot	A2	B1	C1
always be understood as simple extrapolations of processes taking place at present times	A27	B3	C6
			C7
			C8
To expand our understanding of Evolutionary Theory from a multidisciplinary perspective	A2	B1	C1
	A27	B3	C6
			C7
			C8
To know the fossil groups that make up the fossil record and their practical uses	A1	B1	C1
	A2	B3	C6
	A3		C7
	A27		C8
To identify the main bioevents in the history of the Earth, their causes and aftermath	A1	B1	C3
	A2	B2	C6
	A3	B8	
	A22	B9	
	A27	B10	
		B11	
To synthesize knowledge from a long array of subjects such as Geology, Ecology, Microbiology, Biochemistry, Botany or	A2	B3	C4
Zoology in the framework of an ever changing Earth	A3	B8	C6
	A6	B9	C7
	A22	B10	C8
	A29		

Contents		
Торіс	Sub-topic	
SECTION-1.	HISTORY AND CONCEPT OF PALEOBIOLOGY	
Lesson 1. An introduction to Paleobiology	1.1 Introduction	
	1.2 Theoretical and methodological aspects	
	1.3 Divisions of Paleobiology	
SECTION-2.	TAPHONOMY	
Lesson 2. The concept of fossil. Taphonomy	2.1 Introduction	
	2.2 The concept and types of fossils	
	2.3 Biostratinomy	
	2.4 Diagenesis of fossils	
	2.5 Ichnofossils	
	2.6 Time-averaging	
	2.7 Fossil-lagerstätten	
	2.8 Representativity of the fossil record	
SECTION-3.	BIOSTRATIGRAPHY	

Lesson 3. Biostratigraphy	3.1 Introduction
	3.2 Index fossils
	3.3 Biohorizons and Biozones
	3.4 Signor-Lipps effect
	3.5 Lazarus, Elvis and Zombie taxa
SECTION-4.	HISTORY OF LIFE
Lesson 4. Time and Geology	4.1 Dating methods
	4.2 The geologic time scale
Lesson 5. The origin and early evolution of Earth and Life	5.1 Origins of the Solar System and Earth.
	5.2 Origin and evolution of the Atmosphere.
	5.3 Origin of the Hidrosphere.
	5.4 Origin and evolution of the continents.
	5.5 The first life forms.
Lesson 6. The diversification of Life	6.1 The Ediacaran Fauna and other life forms.
	6.2 The Cambrian Explosion.
	6.3 Evolution of life forms during the Paleozoic.
	6.4 Terrestrialization.
Lesson 7. Mass extinction events	7.1 Mass extinctions. Causes and their aftermath.
	7.2 The end-Permian extinction.
	7.3 The end-Cretaceous extinction.
Lesson 8. Climate and Life	8.1 Climatic evolution of the planet Earth.
	8.2 Global glaciations. Methods of study.
	8.3 The Snowball Earth hypothesis.
	8.4 The influence of climatic change on the Quaternary faunas and floras.
SECTION-5.	MORPHOLOGICAL ANALYSIS
Lesson 9. Size and Shape in Fossils	9.1 Introduction
	9.2 The analysis of morphometrical variability
	9.3 Types of growth
	9.4 Population variability
	9.5 Ecophenotypic variability
	9.6 Sexual dimorphism
	9.7 Taphonomical variability
Lesson 10. Ontogeny and Heterochrony	10.1 Introduction
	10.2 Biogenetic and von Baer's Law
	10.3 Heterochrony and its types
	10.4 Heterochrony and allometry
	10.5 Heterochronoclines
	10.6 Dissociated heterochrony
	10.7 Evolutionary consequences of heterochrony
Lesson 11. Morphodynamics and the Evolution of Form	11.1 Introduction
	11.2 Constructional morphology. Phylogenetic factor. Functional factor. Fabricational
	factor. Other factors
	11.3 Research methods in morphodynamics. Biomechanical analysis. Theoretical
	morphology
SECTION-6.	EVOLUTIONARY PALEONTOLOGY
Lesson 12. Classification and Phylogeny	12.1 Introduction
	12.2 Methods of classification. Essentialism, evolutionary, phenetic and cladistic
	12.3 Fossils and Phylogeny. Stratocladistics. Phylogenetic trees

Lesson 13. Speciation	13.1 Introduction
	13.2 Species concepts
	13.3 Modes of speciation
	13.4 The problem of species concept in Paleontology
Lesson 14. Modes of evolution	14.1 Introduction
	14.2 Darwinism and the Synthetic Theory of Evolution
	14.3 Modes of evolution and the fossil record. Phyletic gradualism and punctuated
	equilibria
	14.5 Evolutionary trends
	14.6 Species selection
	14.7 Coordinated stasis
Lesson 15. Biotic crises	15.1 Introduction
	15.2 Concept and types of extinction
	15.3 Recovery after a mass extinction
	15.4 Effects of mass extinctions on evolution
	15.5 Periodicity of mass extinctions
Lesson 16. Paleobiogeography	16.1 Introduction
	16.2 Dispersal biogeography
	16.3 Paleogeography and paleoclimatology
	16.4 Vicariance biogeography
	16.5 Biogeographic patterns and extinctions
Lesson 17. Evolutionary ecology	17.1 Introduction
	17.2 Phanerozoic trends in global diversity. Explanatory hypotheses
	17.3 Law of constant extinction. Red Queen Hypothesis and alternative explanatory
	hypotheses
	17.4 Clade interactions

Planning			
Methodologies / tests	Ordinary class	Student?s personal	Total hours
	hours	work hours	
Document analysis	12	24	36
Workshop	12	24	36
Case study	8	16	24
Laboratory practice	6	6	12
Field trip	9	9	18
Objective test	2	10	12
Personalized attention	12	0	12
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.			

	Methodologies
Methodologies	Description
Document analysis	There will be reading assignments based on textbook chapters and scientific papers. Because some of the materials to be
	tested are not covered in the readings, the lecturers will expand on them during the class. Both readings and explanations by
	the lecturers during classtime make up the theory classes. All readings need to be done prior to the classtime they are listed
Workshop	Readings and contents delivered by the lecturers will be discussed during classtime (remember that all readings need to be
	done in advance). Quizzes covering readings and extra content will be delivered on a regular basis. Both quizzes and class
	participation will be used in the calculation of the grade. All slides used during classtime will be available through the Moodle
	platform

Case study	The lecturers will choose a hot debate topic in Paleontology and students will make a database review of several case studies
	illustrating this debate. Each student will pick up one of these case studies and provide a short written summary and critique of
	this reading. An oral presentation with discussion and comments will also take place in due time. Personal tutorials will be
	carried out on a regular basis before oral presentation. Attendance to the case study sessions is compulsory
Laboratory practice	Lab exercises will focus on the recognition of basic morphological features of fossils and identification of important taxa from
	the Iberian Peninsula. Students will be required to take their own notes and answer the lab quizzes. Attendance to the lab
	sessions is compulsory
Field trip	There will be an approximately 9 hours field trip (whole day including transportation) to the sorroundings of La Barosa and
	Salas de la Ribera (province of León) to explore outcrops with Silurian and Devonian fossils
Objective test	Grading is primarily based on the idea of continuous assessment and so, the final exam IS NOT REQUIRED for those
	students being successful during this continuous assessment. Students failing specific parts or the whole subject are required
	to make the final exam for the parts they failed

Personalized attention		
Methodologies	Description	
Workshop	Attendance to tutorials is expected, especially for those aspects showing greater difficulty such as the case study sessions,	
Laboratory practice	quizzes solving, exams or field trip observations	
Case study		

Assessment			
Methodologies	Description	Qualification	
Workshop	Continuous assessment will take place using in-class quizzes and participation during classes. All quizzes can	65	
	involve multiple choice, matching, true-false questions, fill in the blank questions or short answer and essay		
	questions. Quizzes make up 50% of the final grade, whereas participation in class will add up another 20%		
Laboratory practice	Grading of lab sessions will be carried out with the lab quizzes and the exam on fossil identification	10	
Objective test	As stated in Step 5, grading is primarily based on the idea of continuous assessment and so, the final exam IS	0	
	NOT REQUIRED for those students being successful during this continuous assessment. For the rest of		
	students a final exam will be carried out for the specific parts of the subject (i. e., theory 70%, case studies		
	20% or lab sessions 10%) that they failed		
Case study	The students are expected to produce a short written summary and an oral presentation on a case study that	25	
	will both be graded		
Others			

Assessment comments

Students are required to obtain a final grade of at least 5.0 out of 10 to pass this subject. However, each of the three main parts making up the assessment (theory, case studies and lab sessions) can be compensated among them getting a grade of at least 4.0. Students passing any of the three parts (theory, case studies and lab sessions) are given the opportunity to keep this mark for the two grading opportunities (January and July), being only examined of those parts which they failed. However, all the teaching-learning process of this subject is based on the idea of being developed in the current term. This means that for successive terms the student is suppossed to fullfill all the assignments scheduled for those specific terms.

The grade "No Show" will be given only to those students who have not participated in more than 20% of the activities being assessed during the term.

Students

are required to obtain a final grade of at least 5.0 out of 10 to pass this subject. However, each of the three main parts making up the assessment (theory, case studies and lab sessions) can be compensated among them obtaining a mark of at least 4.0. Students passing any of the three parts (theory, case studies and lab sessions) are given the opportunity to keep this mark for the two (January and July) grading opportunities, being only examined of those parts which they failed. However, all the teaching-learning process of this subject is based on the idea of being developed in the current term. This means that for successive terms the student is supposed to fullfill all the assignments sheduled for these specific terms.

The

grade ?no show? will be given only to those students who have not participated in more than 20% of the assessed activities during the term.

Students are required

Students

are required to obtain a final grade of at least 5.0 out of 10 to pass this subject. However, each of the three main parts making up the assessment (theory, case studies and lab sessions) can be compensated among them obtaining a mark of at least 4.0. Students passing any of the three parts (theory, case studies and lab sessions) are given the opportunity to keep this mark for the two (January and July) grading opportunities, being only examined of those parts which they failed. However, all the teaching-learning process of this subject is based on the idea of being developed in the current term. This means that for successive terms the student is supposed to fullfill all the assignments sheduled for these specific terms.

The

grade ?no show? will be given only to those students who have not participated in more than 20% of the assessed activities during the term.

Students

are required to obtain a final grade of at least 5.0 out of 10 to pass this subject. However, each of the three main parts making up the assessment (theory, case studies and lab sessions) can be compensated among them obtaining a mark of at least 4.0. Students passing any of the three parts (theory, case studies and lab sessions) are given the opportunity to keep this mark for the two (January and July) grading opportunities, being only examined of those parts which they failed. However, all the teaching-learning process of this subject is based on the idea of being developed in the current term. This means that for successive terms the student is supposed to fullfill all the assignments sheduled for these specific terms.

The

grade ?no show? will be given only to those students who have not participated in more than 20% of the assessed activities during the term.

	Sources of information
Basic	- PROTHERO, D. R. (2003). Bringing Fossils to Life. An Introduction to Paleobiology. McGraw-Hill, Boston
	- STANLEY, S. M. (2009). Earth System History. Freeman and Company, New York
	- MARTIN, R. (2012). Earth's Evolving Systems: The History of Planet Earth. Jones & amp; Bartlett Learning
	- FREEMAN, S. & amp; HERRON, J.C. (2013). Evolutionary Analysis. Benjamin Cummings
	- U. of California Paleontology Museum (). Geology Wing/Tree of Life.
	http://www.ucmp.berkeley.edu/exhibit/geology.html
	- REGUANT, S. (2005). Historia de la Tierra y de la Vida. Editorial Ariel, Barcelona
	- WICANDER, R. & amp; MONROE, J. S. (2012). Historical Geology. Evolution of Earth and Life through Time.
	Thompson Learning, Belmont
	- COWEN, R. (2005). History of Life. Blackwell Science, Oxford.
	- BENTON, M. J. & amp; HARPER, D. A. T. (2009). Introduction to Paleobiology and the Fossil Record.
	Wiiey-Blackwell
	- BRIGGS, D. E. G. & amp; CROWTHER, P. R. (2003). Palaeobiology II. Blackwell Science
	- CLOWES, C. et al. (). Palaeos: Life through deep time. http://www.palaeos.com
	- FOOTE, M. & amp; MILLER, A.I. (2007). Principles of Paleontology. W. H. Freeman, New York
	- LEVIN, H. L. (2010). The Earth through Time. John Wiley & amp; Sons, Hoboken, New Jersey
	- Varios autores (). Tree of Life Web Project. http://tolweb.org/tree/phylogeny.html
Complementary	- MELÉNDEZ, B. (1999). Tratado de Paleontología Consejo Superior de Investigaciones Científicas
	- MCNAMARA, K., LONG, J., (1998). 1998. The Evolution Revolution. John Wiley & amp; Sons, Chichester
	- ROGERS, J.J.W. (1993). A History of the Earth. Cambridge University Press, Cambridge
	- ANGUITA, F. (2002). Biografía de la Tierra. Editorial Aguilar, Madrid
	- GOULD, S. J. (1993). El Libro de la Vida. Editorial Crítica, Barcelona
	- FUTUYMA, D. J. (2009). Evolution. Sinauer Associates
	- SKELTON, P. (1993). Evolution. A Biological and Palaeontological Approach. Addison Wesley Longman
	(-). Fósil. Revista de Paleontología. http://www.fosil.cl
	- LEVINTON, J. S. (2001). Genetics, Paleontology, and Macroevolution. Cambridge University Press
	- DOMÈNECH, R. & amp; MARTINELL, J. (1996). Introducción a los Fósiles. Masson
	- CLARKSON, E. N. K. (2001). Invertebrate Palaeontology and Evolution. Blackwell Science, Oxford
	- GOULD, S. J. (1992). La Flecha del tiempo : mitos y metáforas en el descubrimiento del tiempo geológico. Alianza
	Editorial, Madrid
	- FORTEY, R. (1999). La Vida: Una Biografía no Autorizada. Editorial Taurus, Madrid
	- CONDIE, K.C., SLOAN, R.E. (1998). Origin and Evolution of Earth Prentice-Hall, Inc., New Jersey
	- BRENCHLEY, P. J. & amp; HARPER, D. A. T. (1998). Palaeoecology: Ecosystems, Environments and Evolution.
	Chapman & Hall, London

Recommendations
Subjects that it is recommended to have taken before
Botánica/610212102
Xeoloxía/610212108
Zooloxía/610212205
Ecoloxía/610212301
Xenética/610212303
Subjects that are recommended to be taken simultaneously
Xenética Evolutiva/610212621
Bioloxía do Desenvolvemento/610212605
Ecoloxía de Comunidades e Conservación/610212615
Historia da Terra/610212624

Subjects that continue the syllabus

Xenética Evolutiva/610212621

Bioloxía do Desenvolvemento/610212605

Historia da Terra/610212624

Other comments

Students having specific questions or want to discuss class materials are always welcome during the lecturer's office hours. It is very important that they communicate any kind of problem affecting their class performance, ability to take exams or class attendances, especially in the case of students from overseasify you have specific questions or want

to discuss class material, I am more than happy to meet with you and help. I

cannot be your personal tutor, however it is important that you communicate to

me any problems you are having that may affect your class performance, your

ability to take an exam, or your class attendance.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.