

Teaching Guide						
Identifying Data					2014/15	
Subject (*)	Xenética		Code	610G02019		
Study programme	Grao en Bioloxía					
			Descr	iptors		
Cycle		Period	Ye	ar	Туре	Credits
Graduate		2nd four-month period	Sec	ond	Obligatoria	6
Language	Spani	shGalicianEnglish				
Prerequisites						
Department	Bioloxía Celular e Molecular					
Coordinador	Gonza	Gonzalez Tizon, Ana Maria E-mail ana.gonzalez.tizon@udc.es				
Lecturers	Gonzalez Tizon, Ana Maria			E-mail	ana.gonzalez.tizon@udc.es	
	Insua Pombo, Ana Maria			ana.insua@udc	es	
	Martinez Lage, Andres			andres.martinez	@udc.es	
	Vila Taboada, Marta			marta.vila.taboa	da@udc.es	
Web						
General description	Esta materia proporciona os coñecementos básicos sobre a herdanza e a variación dos seres vivos, así como a base					
	metodolóxica propia da análise xenética mendeliana. Complementa outras materias do grao e aporta a base conceptual					
	necesaria para profundar no estudo da Xenética, contemplado nas materias Xenética Molecular (obrigatoria de 3º curso),					
	Xenética Evolutiva e de Poboacións (obrigatoria de 3º curso), e Citoxenética (optativa).					

Study programme competences		
Code	Study programme competences	
A1	Recoñecer distintos niveis de organización nos sistemas vivos.	
A2	Identificar organismos.	
A4	Obter, manexar, conservar e observar especímenes.	
A11	Identificar e analizar material de orixe biolóxica e as súas anomalías.	
A12	Manipular material xenético, realizar análises xenéticas e levar a cabo asesoramento xenético.	
A20	Muestrear, caracterizar e manexar poboacións e comunidades.	
A26	Deseñar experimentos, obter información e interpretar os resultados.	
A29	Impartir coñecementos de Bioloxía.	
A30	Manexar adecuadamente instrumentación científica.	
A31	Desenvolverse con seguridade nun laboratorio.	
B1	Aprender a aprender.	
B2	Resolver problemas de forma efectiva.	
B3	Aplicar un pensamento crítico, lóxico e creativo.	
B4	Traballar de forma autónoma con iniciativa.	
B5	Traballar en colaboración.	
B6	Organizar e planificar o traballo.	
B8	Sintetizar a información.	
B9	Formarse unha opinión propia.	
C1	Expresarse correctamente, tanto de forma oral coma escrita, nas linguas oficiais da comunidade autónoma.	
C2	Dominar a expresión e a comprensión de forma oral e escrita dun idioma estranxeiro.	
C3	Utilizar as ferramentas básicas das tecnoloxías da información e as comunicacións (TIC) necesarias para o exercicio da súa profesión e	
	para a aprendizaxe ao longo da súa vida.	

Learning outcomes	
Subject competencies (Learning outcomes)	Study programme
	competences

Mendelian genetic analysis: the gene as unit of inheritance	A1	B1	C1
	A12	B2	C2
	A26	B3	C3
	A29	B5	
	A30		
	A31		
To study the chromosomal basis of inheritance, sex determination, extranuclear inheritance as well as genetic linkage and	A1	B1	C1
recombination.	A4	B2	C2
	A12	B3	C3
	A26	B4	
	A29	B5	
	A30	B6	
	A31	B9	
To learn about changes in the genetic material	A2	B1	C1
	A11	B2	C2
	A26	B3	C3
	A29	B5	
		B9	
To set the basis of quantitative and population genetics	A1	B1	C1
	A20	B2	C2
	A26	B3	C3
	A29	B5	
	A30	B6	
	A31	B8	

	Contents
Торіс	Sub-topic
1. Introduction to Genetics	Definition of Genetics
	History of Genetics
	Genetics and other sciences
	Genetics and society
2. Mendelian Genetics	Mendel?s experiments: mono and dihibrid crosses
	Concept of geno and phenotype
	Terms and symbols
	Pedigree analysis
3. Chromosomal Basis of Inheritance and Sex Determination	Genetic implications of mitosis and meiosis
	Chromosomal theory of inheritance
	Sex determination
	Sex-linked inheritance
	Sex-limited and sex-influenced traits
	Gene dosage compensation
4. Extensions of and Deviations from Mendelian Genetic	Modification of dominante relationships
Principles	Multiple alleles
	Lethality
	Penetrance and expressivity
	Pleiotropy
	Gene interaction and epistasis
	Position effect
	Environmental interactions

5. Extranuclear Inheritance	Maternal effect
	Maternal inheritance
	General features of mitochondrial and chloroplast genomes
	Heteroplasmy
	Infectious heredity
6. Genetic Mapping in Eukaryotes	Linkage, recombination and mapping of genes on chromosomes
	Interference and coincidence
	Genetic map function: connecting recombination fractions and genetic map distances
7. Genetic Analysis and Mapping in Bacteria and	Bacterial transformation
Bacteriophages	Bacterial conjugation: plasmids and episomes
	Generalized and specialized transduction
	Genetic recombination in bacteriophages. Fine structure of the gene: rll system of
	phage T4
8. Quantitative Genetics	Quantitative traits
	Genes and environment
	Phenotypic distribution and norms of reaction
	Genetic basis of quantitative traits: Johannsen?s experiment
	Polygenic inheritance: Nilsson-Ehle?s experiment
	Heritability
9. Population Genetics	Mendelian population
	Genetic variation
	Allele and genotype frequencies
	Random mating and Hardy-Weinberg equilibrium
	Evolutionary forces: mutation, migration, random drift, and selection
10. The Nature of Genetic Material	Discovery of bacterial transformation
	DNA as source of genetic information: Hershey & amp; Chase?s experiment
	RNA as genetic material in viruses
	Structure and properties of nucleic acids
11. DNA Organization in Chromosomes	Genome size: the C-value paradox
	Bacterial chromosomes
	Eukaryote chromosomes
	DNA packaging: Nucleosomes and Chromatin
	Centromeres and Telomeres
	Lampbrush and polytene chromosomes
	Karvotype
12. DNA Mutation	Random and adaptive mutation
	Mutant types
	Spontaneous and induced mutation
	Detecting mutagens: the Ames test
13. Variations in Chromosome Structure	Deletions
	Duplications
	Inversions
	Translocations
	Robertsonian fusions/dissociations
14 Variations in Chromosome Number	
	Monoploidy
	Polyploidy: Autopolyploidy and Allopolyploidy
	Angunloidy: maiotic pondisiunction, monosomy, trisomy
	Somatic anaunloidy: mitotic nondisjunction sexual messics
	D GITOTIOSOTIES

Teaching labs	Lab 1. GENETIC ANALYSIS IN CORN (Zea mays): INTERACTION AND EPISTASIS.
	Description of shape and colour of F2 seeds (kernel) obtained from different crosses
	Hypothesis testing (chi-square)
	Inference of genotype and phenotype of generations P and F1
	Genetic and Biochemistry basis of the observed phenotypes
	Lab 2. SETTING UP EXPERIMENTS USING Drosophila.
	Raising and handling Drosophila in the lab
	Life cycle
	Analysing fruit flies: distinguishing sex, why isolating virgin females, observation of
	some mutant phenotypes
	Lab 3. LINKAGE MAPPING IN D. melanogaster.
	Reciprocal crosses between wild and three-factor mutant (yellow, white y miniature)
	Analysis of Offspring (F1)
	Testcrosses, analysis of offspring (F2) and statistical approach to determine the
	linkage order and map distances between the three loci on Drosophila chromosomes
	(calculation of frequencies of recombination, coincidence coefficient and interference)
	Lab 4. POLYTENE CHROMOSOME OF THE SALIVARY GLANDS OF D. buzzatii.
	Extraction of larval salivary glands
	Staining with orcein
	Identification of polytene chromosomes and the sex of larva
	Chromosome puffing
	Lab 5. COMPUTER LAB.
	Introduction to bioinformatics databases and resources offered through the NCBI
	Getting familiar with the following databases: PUBMED, BOOKS, TAXONOMY,
	OMIM.

Planning				
Methodologies / tests	Ordinary class	Student?s personal	Total hours	
	hours	work hours		
Laboratory practice	15	22.5	37.5	
Mixed objective/subjective test	2.5	0	2.5	
Supervised projects	8	16	24	
Guest lecture / keynote speech	24	60	84	
Personalized attention	2	0	2	

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies			
Methodologies	Description		
Laboratory practice			
	The teaching labs are designed to allow groups of students to work side by side in order to (i) better comprenhend certain		
	issues of the syllabus and (ii) see ?real? science as approachable, accessible and exciting.		
	Each lab relies on a theoretical basis (teacher explanation + reading assignment) and a hands-on activity.		
Mixed	The final exam is usually composed by a multiple choice/true-false set, short-answer questions, and a set of genetic problems.		
objective/subjective			
test			

Supervised projecto	Crown work, students will be assigned a maximum of four aste of genetic problems, whose written colutions have to be bonded
Supervised projects	Group work. students will be assigned a maximum of four sets of genetic problems, whose whiten solutions have to be handed
	in for evaluation by certain deadlines. Additional group activities may be assigned for the sake of a better comprehension of
	particular issues.
Guest lecture /	Master class and reading groups: the teacher will explain the main contents of each lesson and will assign texts for further
keynote speech	reading. Working with small groups will allow the exchange of ideas among students, under direct supervision of the lecturer.

Personalized attention		
Methodologies	Description	
Supervised projects	All students are welcome to receive regular tuition in both theory and practical issues of the subject. Individual or group	
	appointments may be arranged with the teacher.	

	Assessment	
Methodologies	Description	Qualification
Mixed	The final exam (test, short-answer, set of problems) aims at evaluating student's performance by (i) showing	60
objective/subjective	his/her understanding of theoretical concepts and (ii) developing problem-solving strategies.	
test		
	Evaluation of this activity aims at checking the acquisition of the following competencies: A1, A11, A12, A20,	
	A26, A29	
Laboratory practice	Laboratory attendance is mandatory. Pass mark of 50% in the corresponding lab test.	15
	Evaluation of this activity aims at checking the acquisition of the following competencies: A1, A2, A4, A11, A12, A26, A29, A30, A31.	
Supervised projects	Group work is not mandatory in order to pass the subject. Grading will reflect the students' comprehension of	25
	the topic, their analytical skills, as well as how well the assignment is written and presented.	
	Evaluation of this activity aims at checking the acquisition of the following competencies: A1, A2, A11, A12,	
	A20, A26, A29	

Assessment comments

To pass the subject, students must score at least 50% pass in Laboratory Practice as well as 50% in Mixed objective/subjective test. Marks obtained in Laboratory Practice or Mixed objective/subjective test will be kept for the July examination session if scored at least 50% pass. Marks obtained in Mixed objective/subjective test will be kept for the next two years (i.e., four consecutive examination sessions) if scored at least 50% pass.

The course will appear as "Not attended" only if the student did not attended/handed in any of the labs, examinations, and/or supervised projects. Students scoring the maximum mark in both the mixed objective/subjective test and the supervised projects (6 and 2.5 points, respectively), but failing in laboratory practice, will obtain a final grading of 4.5 (fail).

Sources of information	
Basic	
Complementary	

 Recommendations

 Subjects that it is recommended to have taken before

 Xenética molecular/610G02020

 Xenética de poboacións e evolución/610G02021

 Citoxenética/610G02022

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Estatística/610G02005

Citoloxía/610G02007

Histoloxía/610G02008

Bioquímica: Bioquímica I/610G02011

Other comments

Attending class regularly is one strategy to maintain satisfactory academic progress. Relying on Moodle notes is not enough to pass at the higher education level!Asking questions in class if you do not understand the material presented. The more you read, do homework, participate in class, the more familiar you will become with content, which is a strategy to help you pass.You will also be expected to read other materials in addition to the textbook to give you differing viewpoints and to develop your critical thinking.You are most welcome to set up meetings with your instructors to discuss any issue about the subject.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.