		Guia d	ocente		
	Datos Iden	ntificativos			2014/15
Asignatura (*)	MECÁNICA DE FLUIDOS Código			730G01119	
Titulación	Grao en Arquitectura Naval				
		Descri	ptores		
Ciclo	Periodo	Cu	rso	Tipo	Créditos
Grado	2º cuatrimestre	Seg	undo	Obligatoria	6
Idioma	CastellanoInglés				
Prerrequisitos					
Departamento	Enxeñaría Naval e Oceánica				
Coordinador/a	Prieto Garcia, Abraham Correo electrónico abraham.prieto@udc.es			@udc.es	
Profesorado	Prieto Garcia, Abraham		Correo electrónico abraham.prieto@udc.es		
Web	Web				
Descripción general	La mecánica de fluidos debe ser co	onsiderada como	una asignatura bás	ca en la formación d	de un ingeniero industrial. En este
	curso el alumno estudiará los conceptos fundamentales de cinemática y estática de fluidos, llegará a entender el significado				llegará a entender el significado
	de las ecuaciones de Navier-Stokes tanto en forma integral como diferencial, comprenderá la necesidad y aprenderá a			la necesidad y aprenderá a	
	simplificar estas ecuaciones y estudiará el movimiento de fluidos, la teoría de la capa límite y la turbulencia.			y la turbulencia.	

	Competencias de la titulación
Código	Competencias de la titulación
A7	Conocimiento de la ciencia y tecnología de materiales y capacidad para su selección y para la evaluación de su comportamiento.
A8	Conocimiento de la teoría de circuitos y de las características de las maquinas eléctricas y capacidad para realizar cálculos de sistemas en los que intervengan dichos elementos.
A22	Capacidad para el diseño y cálculo de los espacios habitables de los buques y artefactos marinos, y de los servicios que se disponen en dichos espacios.
A24	Capacidad para la integración a bordo de los sistemas auxiliares teniendo en cuenta su empacho, peso, cargas dinámicas, impacto en la estanqueidad, el espacio necesario para su mantenimiento, etc.
B2	Resolver problemas de forma efectiva.
В3	Aplicar un pensamiento crítico, lógico y creativo.
B4	Trabajar de forma autónoma con iniciativa.
B5	Trabajar de forma colaborativa.
В9	Capacidad de integrarse en grupo de trabajo.
B18	Capacidad de abstracción, comprensión y simplificación de problemas complejos.

Resultados de aprendizaje			
Competencias de materia (Resultados de aprendizaje)	Comp	etencias	de la
	t	itulaciór	ı
Proporcionar el conocimiento de los principios fundamentales que rigen el comportamiento de los medios fluidos a partir de	A7	B2	
principios basicos de conservación y constitución.	A8	В3	
	A24	B4	
		B18	
Introducir las técnicas de ensayo y medida de flujos de fluidos	A8	B5	
		В9	
Presentar aplicaciones prácticas de interés en la solución de problemas en la ingeniería y la industria	A7	B2	
	A8	В3	
	A22	B4	

Contenidos		
Tema	Subtema	

TEMA 1. Introducción y conceptos básicos	La Mecánica de Fluidos
	? La Mecánica de Fluidos, objeto y aplicaciones
	? Definición y división de la Mecánica de Fluidos.
	? Relaciones con otras ciencias
	Definiciones e hipótesis básicas
	? Sólidos, líquidos y gases
	? Hipótesis de medio continuo aplicada a sólidos y a fluidos.
	? Magnitudes fluidas intensivas y extensivas
	? Densidad y velocidad
	? Partícula fluida.
	Fuerzas en el seno del fluido considerado como continuo
	? Fuerzas de volumen y fuerzas másicas. Origen y tratamiento.
	Fuerzas de superficie.
	? Tensor de esfuerzos
	? Aplicación de la segunda ley de Newton a una partícula fluida.
TEMA 2. Fluidostática	Fluidostática I
	? Ecuación general de la fluidostática
	? Condiciones que han de cumplir las fuerzas másicas para que el fluido pueda estar
	en reposo.
	? Demostración del principio de Arquímedes
	Fluidostática II
	? La ecuación de la fluidostática en el caso de que las fuerzas másicas deriven de un
	potencial
	? Hidrostática
	? Atmósfera estándard
	Tensión superficial
	? Efectos de la tensión superficial
	? Ecuación de Laplace de las entrefases
	? Forma de la superficie de separación
	? Línea y ánguio de contacto.

	UNIVERSIDADE DA COR	≀UÑA
TEMA 3. Cinemática	Conceptos de cinemática de fluidos	

Conceptos de cinemática de fluidos

- ? Sistemas de referencia. Velocidad. Puntos de vista de Lagrange y Euler
- ? Movimientos estacionarios y uniformes
- ? Sendas y trayectorias
- ? Trazas, líneas fluidas y líneas de corriente
- ? Líneas, superficies y volúmenes fluidos
- ? Movimiento estacionario

Variación de magnitudes fluidas

- ? Variación temporal de magnitudes fluidas
- ? Gradiente de magnitudes fluidas
- ? Definición y concepto de derivada sustancial
- ? Aceleración

Volúmenes fluidos y de control

- ? Derivación de integrales extendidas a volúmenes fluidos
- ? Correspondencia de integrales extendidas a volúmenes de control
- ? Teorema del transporte de Reynolds
- ? Flujo convectivo de una magnitud fluida

Movimiento en el entorno de un punto

- ? Velocidades en el entorno de un punto
- ? Tensor gradiente de velocidad
- ? Descomposición e interpretación física del tensor
- ? Tensor de velocidades de deformación. Cuádrica asociada
- ? Dilataciones lineal, angular y cúbica unitaria

TEMA 4. D	inámica y	ecuaciones	generales
I LIVIA T. D	mammua y	Coddolonos	generale

Conservación de la masa.

- ? Los modelos fluidos y las leyes de conservación
- ? Principio de conservación de la masa: Ecuación de continuidad
- ? Formas integral y diferencial de la ecuación
- ? Simplificación para el caso con movimiento estacionario
- ? Simplificación para el caso de flujo incompresible

Conservación de cantidad de movimiento.

- ? Ecuación de cantidad de movimiento en forma integral
- ? Ecuación de cantidad de movimiento en forma diferencial
- ? Ecuaciones de Navier-Stokes
- ? Casos con viscosidad constante y viscosidad volumétrica despreciable
- ? Simplificación para el caso de flujo incompresible
- ? Ecuación de la energía mecánica

Conservación de la energía.

- ? Equilibrio termodinámico local
- ? La ecuación de la energía en forma integral
- ? La ecuación de la energía en forma diferencial
- ? Ecuación de la energía interna
- ? Ecuación de la entropía

El sistema completo de ecuaciones de Navier-Stokes

- ? Condiciones iniciales y de contorno
- ? Existencia y unicidad de la solución

Análisis de casos de movimiento unidireccional de fluidos incompresibles que admiten solución exacta

- ? Corriente de Couette
- ? Corriente de Hagen-Poiseuille bidimensional
- ? Corriente de Stokes

TEMA 5. Análisis dimensional	Análisis dimensional
	? Objeto y aplicaciones del análisis dimensional
	? Principio de homogeneidad dimensional o principio de Thompson
	? Teorema Pi de Buckingham
	- 100 one 11 oo 200 mg. am
	Adimensionalización de las ecuaciones generales
	? El proceso de adimensionalizar
	? Los parámetros adimensionales
	i. Número de Strouhal
	ii. Números de Euler, Mach y Cavitación
	iii. Número de Reynolds
	iv. Número de Froude
	v. Número de Prandtl
	Modelos adimensionales
	? Semejanza física y modelado en Mecánica de Fluidos
	? Semejanza establecida desde las ecuaciones generales
	? Condiciones para la semejanza
	? Semejanza física parcial
TEMA 6. Fluidos ideales: Ecuaciones de Euler y Bernouilli	Ecuaciones de Euler. Hipótesis y obtención
	? Condiciones de flujo ideal
	? Obtención de las ecuaciones de Euler a partir de las de Navier-Stokes
	? Movimientos isentrópicos y homentrópicos
	? El sistema completo de ecuaciones de Euler
	? Condiciones iniciales y de contorno
	Ecuaciones de Euler II
	? Ecuaciones de Euler-Bemouilli y de Bernouilli
	? Ecuaciones del movimiento casiestacionario de fluidos ideales
	? Definición de magnitudes de remanso
	: Definition de magnitudes de terranso
	Flujo compresible
	? Movimiento compresible de gases ideales
	? La velocidad del sonido
	? El cono de Mach
TEMA 7. Capas límites	Definiciones y planteamiento del problema
	? Concepto de capa límite
	? Ecuaciones de la capa límite bidimensional incompresible
	? Condiciones de contorno de la capa límite. Naturaleza de las ecuaciones.
	? Espesores de capa límite
	Soluciones para casos simples
	? Solución de Blasius para la capa limite laminar de placa plana sin gradiente de
	presión
	? Solución de Falker-Skan: Efecto de los gradientes de presión
	? Desprendimiento de la capa límite, concepto y estructura
	, , , , , , , , , , , , , , , , , , , ,

TEMA 8. Flujos externos: Aerodinámica incompresible y	Fuerzas sobre cuerpos en el seno de fluidos
compresible	? Arrastre y sustentación
	? Conceptos de aerodinámica
	Aerodinámica compresible
	? Movimiento compresible de gases ideales
	? La velocidad del sonido
	? El cono de Mach
	? Movimiento isentrópico casi-unidireccional casi-estacionario de gases
	? Condiciones críticas
	? Introducción a las ondas de choque
TEMA9. Flujos internos: Fricción y pérdidas de carga	? Movimiento turbulento en conductos
	? Pérdidas de carga: Ecuación de Bernouilli generalizada
	? Coeficiente de fricción. Diagrama de Moody
	? Pérdidas de carga locales
	? Redes de tubería en serie y paralelo
	? Instalaciones con máquinas hidráulicas
Prácticas de Laboratorio	Práctica 1. Determinación de la velocidad de descarga de un depósito
	Práctica 2. Calibración de un Venturi
	Práctica 3. Distribución de presiones alrededor de un cilindro
	Práctica 4.1. Pérdidas de carga en tubo recto
	Práctica 4.2. Pérdidas de carga en tubo con accesorios
	Práctica 5. Capa límite en una placa plana

	Planificación		
Metodologías / pruebas	Horas presenciales	Horas no presenciales / trabajo autónomo	Horas totales
Sesión magistral	22.5	36	58.5
Prácticas de laboratorio	8	16	24
Prueba mixta	2	0	2
Trabajos tutelados	2	0	2
Solución de problemas	20.5	41	61.5
Atención personalizada	2	0	2
(*)Los datos que aparecen en la tabla de planificación són de d	carácter orientativo, considerando	la heterogeneidad de l	os alumnos

	Metodologías	
Metodologías	Descripción	
Sesión magistral	Actividad presencial en el aula que sirve para establecer los conceptos fundamentales de la materia. Consiste en la	
	exposición oral complementada con el uso de medios audiovisuales y la introdución de algunas preguntas dirigidas a los	
	estudiantes, con el fin de transmitir conocimientos y facilitar el aprendizaje.	
Prácticas de	Desarrollo de prácticas en el laboratorio de mecánica de fluidos. Los alumnos obtendrán datos experimentales de los valores	
laboratorio	de distintas magnitudes fluidodinámicas en los distintos bancos y equipos del laboratorio. Posteriormente deberán de hacer	
	un tratamiento de sos datos que les permita tener un conocimiento preciso de los fenómenos estudiados.	
Prueba mixta	Se realizarán dos pruebas de evaluación, una a mediados y otra al final de curso. Consistirán en una prueba escrita en la que	
	habrá que responder a diferentes tipos de preguntas y resolver problemas.	
Trabajos tutelados	Se llevarán a cabo a lo largo del curso, varios ejercicios durante las horas de clase para realizar un seguimiento continuo del	
	proceso de aprendizaje de los alumnos en la materia.	

Solución de
problemas

El profesor explicará el método y la forma que se ha de seguir en la resolución de distintos tipos de problemas. Los problemas serán ejercicios de aplicación de las distintas partes que conforman la materia. En cada parte se comenzará con ejercicios simples que se irán haciendo mas complejos con el fin de adaptarlos lo mas posible a casos reales. El alumno dispondrá de una colección de problemas que podrá resolver por si mismo.

Atención personalizada		
Metodologías	Descripción	
Trabajos tutelados	Las prácticas de laboratorio las realizan los alumnos por parejas en grupos reducidos que no exceden las tres parejas por	
Prácticas de	cada sesión de prácticas. Esto permite al profesor prestar una atención personalizada. En cada momento cada pareja realiza	
laboratorio	una práctica diferente y se van rotando a lo largo de la sesión.	

	Evaluación	
Metodologías	Descripción	Calificación
Prueba mixta	Se realizará una prueba a mitad del curso y otra al final. Cada una de las dos pruebas tendrá una parte de	75
	problemas y otra de teoría que constará no solo de preguntas de desarrollo teórico sino también de ejercicios	
	simples de aplicación de los conceptos teóricos desarrollados en clase. Esta parte tendrá un peso del 50% de	
	la nota de la prueba. La parte de problemas tendrá un peso del 50%.	
	Si la nota de la primera prueba es superior a 4/10 y las notas de las partes de teoría y problemas son	
	superiores a 3/10 se podrá liberar la primera parte de la asignatura para el examen final y se ponderarán	
	ambas pruebas al 50%. Esta liberación se podrá extender hasta el examen final de julio del mismo año si el	
	alumno se presenta al examen de junio.	
	Para aprobar la asignatura es necesario obtener al menos un 5/10 en la prueba mixta y al menos un 3/10 en	
	la nota media de la parte de problemas y en la parte de teoría.	
Trabajos tutelados	Se podrán realizar algunos ejercicios tutelados evaluados que supondrán hasta 10% de la nota final. Si el	10
	cumplimiento del temario no deja tiempo para estos trabajos tutelados, el 10% de cualificación asignado	
	pasará a la prueba mixta.	
Prácticas de	Las asistencia a las practicas de laboratorio es obligatoria. Deberá realizarse también una memoria de	15
laboratorio	prácticas cuya nota mínima será de 5 sobre 10 para estar aprobada.	
	La asistencia al laboratorio se mantendrá para años sucesivos si se aprueba la memoria de prácticas en el	
	año de la realización de las mismas.	
Otros		

Observaciones evaluación

<p&amp;gt;La segunda prueba mixta se hará coincidir con el examen final en el que los alumnos que no tengan liberada la parte correspondiente a la primera prueba mixta se examinarán de toda la materia.&amp;amp;amp;amp;amp;amp;amp;amp;gt;

Fuentes de información				
Básica				
Complementária				

	Recomendaciones	
	Asignaturas que se recomienda haber cursado previamente	
MÁQUINAS TERMICAS E HIDRAULICAS/730G03023		
HIDRÁULICA Y NEUMÁTICA/730G0		
	Asignaturas que se recomienda cursar simultáneamente	

Asignaturas que continúan el temario
CÁLCULO/730G03001
FÍSICA I/730G03003
ALGEBRA/730G03006
FÍSICA II/730G03009
ECUACIONES DIFERENCIALES/730G03011
TERMODINÁMICA/730G03014
MECÁNICA/730G03026

Otros comentarios

(*) La Guía Docente es el documento donde se visualiza la propuesta académica de la UDC. Este documento es público y no se puede modificar, salvo cosas excepcionales bajo la revisión del órgano competente de acuerdo a la normativa vigente que establece el proceso de elaboración de guías