		Teachin	g Guide			
Identifying Data				2014/15		
Subject (*)	Termodinámica técnica		Code	730G05015		
Study programme	Grao en Enxeñaría Naval e Oceánio	Grao en Enxeñaría Naval e Oceánica				
		Desci	riptors			
Cycle	Period	Ye	ear	Туре	Credits	
Graduate	1st four-month period	Sec	ond	Obligatoria	6	
Language	Spanish		'		'	
Prerequisites						
Department	Enxeñaría Naval e Oceánica					
Coordinador	ador Calvo Diaz, Jose Ramon		E-mail	jose.ramon.calvo	jose.ramon.calvo@udc.es	
Lecturers	Lecturers Calvo Diaz, Jose Ramon		E-mail jose.ramon.calvo@		@udc.es	
Garcia Del Valle, Javier Lamas Galdo, Isabel			javier.garciad@u	dc.es		
			isabel.lamas.gald	lo@udc.es		
Web	www.udc.es			,		
General description						

	Study programme competences
Code	Study programme competences
A1	Skill for the resolution of the mathematical problems that can be formulated in the engineering. Aptitude for applying the knowledge on:
	linear algebra; geometry; differential geometry; differential and integral calculation; differential equations and in partial derivatives;
	numerical methods; algorithmic numerical; statistics and optimization
A2	Understanding and domination of the basic concepts on the general laws of the, thermodynamics, mechanics, fields and waves and
	electromagnetism and its application for the resolution of problems characteristic of the engineering

Learning outcomes			
Subject competencies (Learning outcomes)		Study programme	
	co	mpetend	es
(1) Modelar matematicamente sistemas e procesos relacionados a la utilización y generación de la energía	A1		
(2) Aprender a aprender	A2		
(3) Resolver problemas de forma efectiva.	A1		
(7) Capacidad de abstracción, comprensión y simplificación de problemas complejos.	A2		

	Contents
Topic	Sub-topic
1. Introduction to Thermodynamics	Applications of Thermodynamics. Continuum medium. Basic concepts: system,
	surroundings, state, thermodynamical property, equilibrium. Characterization and
	measurement of primitive properties: pressure, volume, temperature. Temperature
	scale. Gas thermometer.
2. Work, energy and the 1st law of Thermodynamics	Review of mechanical concepts of energy. Examples: energy balance. Concept of
(conservation of energy)	work. Electric work. Examples. Cuasi-equilibrium processes and work. Heat iteration.
	Examples of heat and work. Internal energy and total energy. Conservation of energy.
	Heat transfer at constant pressure and volume. Enthalpy. Internal energy and enthalpy
	of ideal gasses and compressible flows. Tables of ideal gasses.
3. Propiedades de una sustancia pura	Ideal gas equation of state and characterization of the state using two independent
	properties. Incompressible flows. Phase diagrams and phases of a pure substance.
	Pure simple compressible substances. Characterization of pure simple compressible
	substances. Equation of state and thermodynamical surfaces. (p, v) and (T, v)
	diagrams of a pure simple compressible substance. Tables of thermodynamic
	properties and reference states for water refrigerants. Examples.

4. Conservation of energy and 1st law of Thermodynamics	Vapor turbines, hydraulic turbines, compressors, nozzles, heat exchangers. Concept
4. Conservation of energy and 1st law of Thermodynamics	
	of control volume (open system). Conservation of mass. Examples. Conservation of
	energy and input/output works. Conservation of mass and energy applied to thermal
	machines. Steady and transient states. Filling and emptying of tanks.
5. 2nd law of Thermodynamics and introduction to	Concept of reversibility. Irreversible processes. Spontaneous processes. Internally
thermodynamic cycles	reversible processes. Thermal reservoir. Power cycles and refrigerators. Efficiency
	and coefficient of performance (COP). 2nd law of Thermodynamics: Kelvin-Plank and
	Clausius statements. Equivalence between both statements. Carnot cycle of an ideal
	gas inside a cylinder-piston system. Efficiency of a reversible power cycle.
	Corollaries of the 2nd law of thermodynamics. Kelvin temperature scale. Clausius
	inequality.
6. Entropy	Analogy between work-pressure and heat-temperature in reversible process. Entropy
	as thermodynamic property. Thermodynamic equations related to entropy. Equations
	for ideal gasses. Tables of properties for pure simple compressible substances. (T, s)
	and (h, s) diagrams. Generation of entropy in irreversible processes. Generation and
	transfer of entropy. Open system. Application to thermal machines. Efficiency in
	thermal machines: compressors, pumps, turbines, nozzles. Applications.

Plan	nning		
Methodologies / tests	Ordinary class	Student?s personal	Total hours
	hours	work hours	
ICT practicals	30	40	70
Guest lecture / keynote speech	40	30	70
Long answer / essay questions	9	0	9
Personalized attention	1	0	1
(*)The information in the planning table is for guidance only and does	not take into account the	heterogeneity of the stu	dents.

	Methodologies	
Methodologies	Description	
ICT practicals	Students learn the software EES (Engineering Equation Solver). Thermodynamical problems will be solved using EES.	
	There will also be lab work.	
Guest lecture /	Conventional classes.	
keynote speech		

	Personalized attention
Methodologies	Description
ICT practicals	Personal attention will be provided to the students.

Long answer / essay

questions

Two exams

	Assessment	
Methodologies	Description	Qualification
Long answer / essay	First exam: 30%	80
questions	Second exam: 70%	
ICT practicals	Students may deliver some exercises and lab work	20
Others		

Assessment comments

2/3

	Sources of information	
Basic	- M. Moran y H. N Shapiro (2004). Fundamentals of Engineering Thermodynamics. John Willey & Sons	
	- J. Mª Sáiz Jabardo (2008). Introducción a la Termodinámica.	
	- Y. A. Çengel y M. A. Boles. (2006). Thermodynamics. McGraw-Hill	
Complementary		

	Recommendations	
	Subjects that it is recommended to have taken before	
FLUID MECHANICS/730G011	9	
CALOR E FRIO INDUSTRIAL/I	EFRIG/730G03020	
MÁQUINAS TERMICAS E HID	RAULICAS/730G03023	
	Subjects that are recommended to be taken simultaneously	
	Subjects that continue the syllabus	
CALCULUS/730G01101		
PHYSICS I/730G01102		
DIFFERENTIAL EQUATIONS/	30G01110	
MECHANICS/730G01118		
	Other comments	

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.