Datos Identificativos 2013/14
Asignatura (*) FUNDAMENTOS DE ELECTRÓNICA Código 730G04016
Titulación
Grao en enxeñaría en Tecnoloxías Industriais
Descriptores Ciclo Período Curso Tipo Créditos
Grao 2º cuadrimestre
Segundo Obrigatoria 6
Idioma
Castelán
Prerrequisitos
Departamento Enxeñaría Industrial
Coordinación
Perez Serantes, Roberto Jose
Correo electrónico
roberto.perez@udc.es
Profesorado
Leira Rejas, Alberto Jose
Perez Castelo, Francisco Javier
Perez Serantes, Roberto Jose
Correo electrónico
alberto.leira@udc.es
francisco.javier.perez.castelo@udc.es
roberto.perez@udc.es
Web http://campusvirtual.udc.es/moodle/
Descrición xeral

Competencias do título
Código Competencias da titulación
A3 Coñecementos básicos sobre o uso e programación dos ordenadores, sistemas operativos, bases de datos e programas informáticos con aplicación en enxeñaría.
A11 Coñecementos dos fundamentos da electrónica.
B1 Aprender a aprender.
B2 Resolver problemas de forma efectiva.
B3 Aplicar un pensamento crítico, lóxico e creativo.
B4 Traballar de forma autónoma con iniciativa.
B5 Traballar de forma colaboradora.
B6 Comportase con ética e responsabilidade social como cidadán e como profesional.
B7 Comunicarse de xeito efectivo nun ámbito de traballo.
B8 Actitude orientada ao traballo persoal intenso.
B9 Capacidade de integrarse en grupo de traballo.
B10 Actitude orientada á análise.
B11 Actitude creativa.
B12 Capacidade para encontrar e manexar a información.
B13 Capacidade de comunicación oral e escrita.
B14 Manexo de sistemas asistidos por ordenador.
B16 Fixar obxectivos e tomar decisións.
B18 Capacidade de abstracción, comprensión e simplificación de problemas complexos.
C1 Expresarse correctamente, tanto de forma oral coma escrita, nas linguas oficiais da comunidade autónoma.
C2 Dominar a expresión e a comprensión de forma oral e escrita dun idioma estranxeiro.
C3 Utilizar as ferramentas básicas das tecnoloxías da información e as comunicacións (TIC) necesarias para o exercicio da súa profesión e para a aprendizaxe ao longo da súa vida.
C4 Desenvolverse para o exercicio dunha cidadanía aberta, culta, crítica, comprometida, democrática e solidaria, capaz de analizar a realidade, diagnosticar problemas, formular e implantar solucións baseadas no coñecemento e orientadas ao ben común.
C6 Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.
C7 Asumir como profesional e cidadán a importancia da aprendizaxe ao longo da vida.

Resultados de aprendizaxe
Competencias de materia (Resultados de aprendizaxe) Competencias da titulación
Conocer el funcionamiento de los principales componentes electrónicos (diodos, transistores , amplificadores operacionales, sensores, puertas lógicas, etc). A3
A11
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B16
B18
C1
C2
C3
C4
C6
C7
Analizar de forma práctica (simulación y montajes reales) y teórica circuitos electrónicos básicos. A3
A11
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B16
B18
C1
C2
C3
C4
C6
C7
Manejo de los equipos de medida (osciloscopio y polímetro) y de alimentación (generador de señal y funete de alimentación) necesarios para analizar montajes reales de circuitos electrónicos básicos. A3
A11
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B16
B18
C1
C2
C3
C4
C6
C7
Manejo de software para la simulación de circuitos electrónicos. A3
A11
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B16
B18
C1
C2
C3
C4
C6
C7

Contidos
Temas Subtemas
1. Componentes pasivos 1.1 Resistencias
1.1.1. Tipos de resistencias.
1.1.2. Potenciómetros y reóstatos
1.1.3. Resistencias no lineales
1.1.4. Resistencia en alta frecuencia
1.2. Condensadores
1.2.1. Tipos de condensadores.
1.2.2. Trimmers y condensadores variables.
1.2.3. Fenómenos de carga y descarga.
1.2.4. Condensador en alta frecuencia
1.3. Inductancias
1.3.1. Inductancias y ferritas
1.3.2. Características de bobinas y ferritas
1.3.3. Fenómenos de carga y descarga
1.3.4. Inductor en alta frecuencia
2. Amplificador ideal. 2.1 Amplificadores de tensión.
2.2 Amplificadores de corriente.
2.3 Amplificadores de transconductancia.
2.4 Amplificadores de transresistencia.
2.5 Amplificadores. Respuesta en frecuencia.
2.6 Diagramas de Bode.
3. Amplificador Operacional Ideal. 3.1. Modelo Ideal. Parámetros Fundamentales
3.2. Circuitos Básicos.
3.2.1. Amplificador Inversor.
3.2.2. Amplificador No Inversor
3.2.3. Sumador
3.2.4. Seguidor de Tensión.
3.2.5. Amplificador Diferencial.
3.2.6. Integrador
3.2.7. Diferenciador
3.2.8. Trigger Smith
4. Diodos. 4.1. Estados del diodo.
4.2. Modelo del diodo.
4.3. Diodo zener.
4.4. Circuitos básicos con diodos.
4.4.1. Circuitos limitadores.
4.4.2. Circuitos de Rectificación.
4.4.2.1. Rectificadores con diodos.
4.4.2.2. Rectificadores de precisión
4.4.2.3. Rectificadores controlados.
4.4.3. Circuitos fijadores
4.5. Análisis mediante el método de punto crítico
5. Transistor Bipolar (BJT). 5.1. Principios Físicos.
5.1.1. Transistor sin polarización
5.1.2. Transistor Polarizado.
5.1.3. Curvas características de Entrada y de Salida
5.1.4. Zonas de Funcionamiento.
5.2. Recta de carga.
5.3. Modelo estático.
5.4. Análisis de Punto de Trabajo.
5.5. Circuitos de Polarización.
5.6. El transistor como interruptor.
6. Transistor de Efecto Campo (FET) 6.1. Transistores de efecto campo de puerta aislada MOSFET.
6.1.1. Mosfet de Enriquecimiento y deplexión.
6.1.1.1. Principios Físicos.
6.1.1.2. Zonas de funcionamiento.
6.1.1.3. Curvas características de entrada y de salida.
6.1.1.4. Modelo estáticos.
6.1.2. Análisis de Punto de Trabajo.
6.1.3. Circuitos de Polarización.
6.2. Transistores de efecto campo de unión JFET.
6.2.1. Principios Físicos.
6.2.2. Zonas de funcionamiento.
6.2.3. Curvas características de entrada y de salida
6.2.4. Modelo estáticos..
6.2.5. Análisis de Punto de Trabajo.
6.2.6. Circuitos de Polarización.
6.3. El transistor de efecto campo como resistencia.
6.4. El transistor de efecto campo como interruptor.
7.Optoelectrónica . 7.1 Diodos emisores de luz (LED'S).
7.2 Fotodiodos y fototransistores.
7.3 Optoacopladores.
7.4 Circuitos de aplicación básicos.

8.Instrumentación electrónica básica 8.1 Amplificadores diferenciales.
8.2 Amplificadores de Instrumentación.
9.Filtros analógicos. 9.1 Filtros Pasivos.
9.2 Filtros Activos.
10. Sensores y transductores. 10.1 Tipos de sensores básicos.
10.2 Puente de Wheastone.
11.Circuitos acondicionadores de señal. 11.1 Transmisión de la señal: 4 a 20 mA.
11.2 Conversión V/F.
11.3 Convertidores AD/DA básicos.
12. Electrónica Digital(I) : Lógica combinacional 12.1 Puertas lógicas. Tablas de verdad
12.2 Circuitos combinacionales
12.3 Decodificadores. Multiplexores.
12.4 Circuitos aritméticos.
13. Electrónica Digital(II) : Lógica secuencial 13.1 Biestables.
13.2 Contadores síncronos y asíncronos.
13.3 Registros de desplazamiento.
14. Sistemas digitales. 14.1 Circuitos integrados comerciales: familias lógicas y escalas de integración.
14.2 Microprocesadores y microcontroladores.
14.3 Procesadores digitales de señal.

Planificación
Metodoloxías / probas Horas presenciais Horas non presenciais / traballo autónomo Horas totais
Prácticas a través de TIC 0 15 15
Prácticas de laboratorio 9 0 9
Proba obxectiva 5 15 20
Sesión maxistral 20 20 40
Proba de resposta múltiple 1 5 6
Presentación oral 1 15 16
Solución de problemas 16 24 40
 
Atención personalizada 4 0 4
 
*Os datos que aparecen na táboa de planificación son de carácter orientativo, considerando a heteroxeneidade do alumnado

Metodoloxías
Metodoloxías Descrición
Prácticas a través de TIC Durante el curso se propondrán problemas para que los alumnos los resuelvan de foma teórica y práctica mediante simulación. Su realización es voluntaria y evaluable. Una solución detallada de cada problema propuesto se publicará en la FV para la autoevalución del alumno. Una de las prácticas de laboratorio se realiza de forma no presencial realizando un tutorial para el aprendizaje básico de creación y análisis de circuitos electrónicos con Orcad Pspice.
Prácticas de laboratorio Consistirá en el montaje real y simulación de circuitos electrónicos básicos utilizando los aparatos de medida y de alimentación básicos (osciloscopio, funete alimentación, generador de señal y polímetro) y el programa de simulación electrónica Orcad Pspice.
Proba obxectiva La prueba objetiva escrita tiene el objetivo de comprobar si el alumno ha adquirido las competencias fijadas como objetivo de esta asignatura. Habrá al menos un examen parcial.
Sesión maxistral En las sesiones magistrales se desarrollan los contenidos de la asignatura tanto a nivel teórico como práctico.
Proba de resposta múltiple Se realizarán pruebas de respuesta múltiple, para la comprobación de los conocimientos adquiridos, de forma periódica, en las horas de clase y/o al mismo tiempo que las pruebas objetivas.
Presentación oral Exposición audiovisual de algún tema o parte de un mismo, con una información previamente recopilada por el alumno utilizando de manera preferente las TIC. Se realizará en grupos con número de miembros adecuado a la tarea.
Solución de problemas Durante las sesiones magistrales se plantean supuestos prácticos para su resolución. En dicha resolución se fomenta la participación del alumno.

Atención personalizada
Metodoloxías
Sesión maxistral
Prácticas de laboratorio
Prácticas a través de TIC
Solución de problemas
Proba obxectiva
Proba de resposta múltiple
Presentación oral
Descrición
Asociadas a las lecciones Magistrales, presentación oral y las sesiones prácticas, cada alumno dispone para la reolución de sus posibles dudas y/o problemas, de las correspondiente sesiones de tutoría personalizada.

Avaliación
Metodoloxías Descrición Cualificación
Prácticas de laboratorio Su realización con asistencia y aprovechamiento adecuado, tendrá una valoración de 6 puntos (si el alumno/a no ha tenido ninguna falta de asistencia), 5 puntos (si el alumno/a ha tenido una falta de asistencia) y en caso de tener 2 o más faltas obtendrá un No Apto, (tendrá derecho a un examen de prácticas, una vez que haya realizado el examen final y obtenga una calificación suficiente en ese final).

En la última práctica se incluirán unos ejercicios de prácticas puntuables desde 0 a 2 puntos máximo, a realizar por los alumnos que hayan obtenido un aprobado en las prácticas.

El aprobado en prácticas es imprescindible para aprobar la asignatura.
La nota obtenida en las Prácticas de Laboratorio se guarda para el curso siguiente.
8
Prácticas a través de TIC Durante el curso se propondrán problemas para que los alumnos los resuelvan de forma teórica y práctica mediante simulación.

La nota obtenida en las Prácticas a través de TIC, no se guarda para el curso siguiente.
15
Proba obxectiva Las pruebas objetivas escritas tienen el objetivo de comprobar si el alumno/a ha adquirido las competencias fijadas como objetivo de esta asignatura.

Se realizarán un primer parcial durante el curso y un segundo parcial, dentro del examen final. Cada parcial valdrá 35 puntos máximo, (tendrá 25 puntos de prueba objetiva, más 10 puntos de una prueba de respuesta múltiple).

Los que hayan suspendido el primer parcial, tendrán que recuperarlo en el examen final.

El examen de Julio tendrá la misma estructura.

Si algún alumno aprueba alguno de los dos parciales, durante el curso o en Junio, pero no aprueba la asignatura, ese parcial se guarda para Julio.

Los parciales no se guardan para el curso siguiente.?
50
Proba de resposta múltiple Se realizarán dos pruebas de respuesta múltiple, para la comprobación de los conocimientos adquiridos, una con cada parcial. 20
Presentación oral Exposición audiovisual de un tema o parte de un mismo, con una información previamente recopilada por el alumno utilizando de manera preferente las TIC. Se realizará en grupos con número de miembros adecuado a la tarea.

La nota obtenida en la Presentación oral, no se guarda para el curso siguiente.
7
 
Observacións avaliación

Para
aprobar la asignatura hay que obtener una puntuación mínima de 50 puntos sobre
100. La nota final se obtendrá sumando las puntuaciones obtenidas en Prácticas
a través de TIC, Prácticas de laboratorio, Presentación Oral, Prueba de
respuesta múltiple y Prueba objetiva, siempre y cuando se cumplan las
siguientes condiciones:

Que se hayan
realizado y aprobado las Prácticas de laboratorio y al menos una de las
siguientes:

  • Que se haya aprobado (puntuación mínima 17,5)
    el primer examen parcial.
  • Que se haya aprobado (puntuación mínima 17,5)
    el segundo examen parcial.
  • Si se cumple que la puntuación obtenida en
    cada uno de los parciales es mayor o igual que 14 puntos; que la suma de todas
    las notas sea mayor o igual que 50 puntos.

Fontes de información
Bibliografía básica

Hambley, Allan (2002). Electrónica. Prentice-Hall

Norbert R. Malik, Circuitos Electrónicos Análisis, Simulación y Diseño, Prentice Hall , 1998.

Pallas Areny. Sensores y acondicionadores de señal. Marcombo.

Floyd T.L (2000). Fundamentos de Sistemas Digitales. Prentice-Hall, 7ª Ed

  • Recursos disponibles en la Facultad Virtualde la UDC (tutoriales, problemas, software, FAQ, tutorias online etc.)
Bibliografía complementaria

Maloney, Timothy J(1997). Electrónica Industrial Moderna.Prentice-Hall, 3ª Ed.

Roy W. Godoy, OrCAD PSpice para Windows Volumen I: Circuitos DC y AC, Prentice Hall, 2003, Capítulo de libro,

Roy W. Godoy, OrCAD PSpice para Windows Volumen II: Dispositivos, circuitos y amplificadores operacionales, Prentice Hall, 2003, Capítulo de libro, 

Roy W. Godoy, OrCAD PSpice para Windows Volumen III: Datos y comunicaciones digitales, Prentice Hall, 2003, Capítulo de libro,


Recomendacións
Materias que se recomenda ter cursado previamente

Materias que se recomenda cursar simultaneamente

Materias que continúan o temario
FUNDAMENTOS DA ELECTRICIDADE/730G03012

Observacións


(*)A Guía docente é o documento onde se visualiza a proposta académica da UDC. Este documento é público e non se pode modificar, salvo casos excepcionais baixo a revisión do órgano competente dacordo coa normativa vixente que establece o proceso de elaboración de guías