Identifying Data 2013/14
Subject (*) Xenética Code 610G02019
Study programme
Grao en Bioloxía
Descriptors Cycle Period Year Type Credits
Graduate 2nd four-month period
Second Obligatoria 6
Language
Spanish
Galician
English
Prerequisites
Department Bioloxía Celular e Molecular
Coordinador
Gonzalez Tizon, Ana Maria
E-mail
ana.gonzalez.tizon@udc.es
Lecturers
Gonzalez Tizon, Ana Maria
Insua Pombo, Ana Maria
Martinez Lage, Andres
Vila Taboada, Marta
E-mail
ana.gonzalez.tizon@udc.es
ana.insua@udc.es
andres.martinez@udc.es
marta.vila.taboada@udc.es
Web
General description Esta materia proporciona os coñecementos básicos sobre a herdanza e a variación dos seres vivos, así como a base metodolóxica propia da análise xenética mendeliana. Complementa outras materias do grao e achega a base conceptual necesaria para afondar no estudo da Xenética, contemplado nas materias Xenética Molecular (obrigatoria de 3 er curso), Xenética Evolutiva e de Poboacións (obrigatoria de 3 er curso), e Citoxenética (optativa).

Study programme competencies
Code Study programme competences
A4 Obter, manexar, conservar e observar especímenes.
A11 Identificar e analizar material de orixe biolóxica e as súas anomalías.
A12 Manipular material xenético, realizar análises xenéticas e levar a cabo asesoramento xenético.
A13 Realizar o illamento e cultivo de microorganismos e virus.
A20 Muestrear, caracterizar e manexar poboacións e comunidades.
A21 Deseñar modelos de procesos biolóxicos.
A26 Deseñar experimentos, obter información e interpretar os resultados.
A29 Impartir coñecementos de Bioloxía.
A30 Manexar adecuadamente instrumentación científica.
A31 Desenvolverse con seguridade nun laboratorio.
B1 Aprender a aprender.
B2 Resolver problemas de forma efectiva.
B3 Aplicar un pensamento crítico, lóxico e creativo.
B4 Traballar de forma autónoma con iniciativa.
B5 Traballar en colaboración.
B6 Organizar e planificar o traballo.
B7 Comunicarse de maneira efectiva nunha contorna de traballo.
B8 Sintetizar a información.
B9 Formarse unha opinión propia.
B10 Exercer a crítica científica.
B11 Debater en público.
B12 Adaptarse a novas situacións.
B13 Comportarse con ética e responsabilidade social como cidadán e como profesional.
C1 Expresarse correctamente, tanto de forma oral coma escrita, nas linguas oficiais da comunidade autónoma.
C2 Dominar a expresión e a comprensión de forma oral e escrita dun idioma estranxeiro.
C3 Utilizar as ferramentas básicas das tecnoloxías da información e as comunicacións (TIC) necesarias para o exercicio da súa profesión e para a aprendizaxe ao longo da súa vida.
C4 Desenvolverse para o exercicio dunha cidadanía aberta, culta, crítica, comprometida, democrática e solidaria, capaz de analizar a realidade, diagnosticar problemas, formular e implantar solucións baseadas no coñecemento e orientadas ao ben común.
C5 Entender a importancia da cultura emprendedora e coñecer os medios ao alcance das persoas emprendedoras.
C6 Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.
C7 Asumir como profesional e cidadán a importancia da aprendizaxe ao longo da vida.
C8 Valorar a importancia que ten a investigación, a innovación e o desenvolvemento tecnolóxico no avance socioeconómico e cultural da sociedade.

Learning aims
Subject competencies (Learning outcomes) Study programme competences
Manexar especímenes e realizar análise xenéticos. Deseñar experimentos e interpretar os resultados, redactalos e executalos. Manexar diferentes aparellos e instrumentos científicos con seguridade. A4
A11
A12
A13
A20
A21
A26
A30
A31
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
C1
C2
C3
C4
C5
C6
C7
C8
Aprender a traballar en xenética. Plantexar un problema, buscar as posibles solucións, comprobar a validez das hipotesis e redactar os resultados. A11
A12
A13
A20
A21
A29
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
C1
C2
C3
C4
C5
C6
C7
C8
Utilizar as plataformas virtuais e fontes de información. Ter unha actitude crítica e responsable. Valorar a importacia da investigación na sociedade. A11
A12
A21
A26
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
C2
C3
C6

Contents
Topic Sub-topic
1. Introduction to Genetics Definition of Genetics
History of Genetics
Genetics and other sciences
Genetics and society
2. Mendelian Genetics Mendel’s experiments: mono and dihibrid crosses
Concept of geno and phenotype
Terms and symbols
Pedigree analysis
3. Chromosomal Basis of Inheritance and Sex Determination Genetic implications of mitosis and meiosis
Chromosomal theory of inheritance
Sex determination
Sex-linked inheritance
Sex-limited and sex-influenced traits
Gene dosage compensation
4. Extensions of and Deviations from Mendelian Genetic Principles Modification of dominante relationships
Multiple alleles
Lethality
Penetrance and expressivity
Pleiotropy
Gene interaction and epistasis
Position effect
Environmental interactions
5. Extranuclear Inheritance Maternal effect
Maternal inheritance
General features of mitochondrial and chloroplast genomes
Heteroplasmy
Infectious heredity
6. Genetic Mapping in Eukaryotes Linkage, recombination and mapping of genes on chromosomes
Interference and coincidence
Genetic map function: connecting recombination fractions and genetic map distances
7. Genetic Analysis and Mapping in Bacteria and Bacteriophages Bacterial transformation
Bacterial conjugation: plasmids and episomes
Generalized and specialized transduction
Genetic recombination in bacteriophages. Fine structure of the gene: rII system of phage T4
8. The Nature of Genetic Material

Discovery of bacterial transformation
DNA as source of genetic information: Hershey & Chase’s experiment
RNA as genetic material in viruses
Structure and properties of nucleic acids
9. DNA Organization in Chromosomes

Genome size: the C-value paradox
Bacterial chromosomes
Eukaryote chromosomes
DNA packaging: Nucleosomes and Chromatin
Centromeres and Telomeres
Lampbrush and polytene chromosomes
Karyotype
10. DNA Mutation
Random and adaptive mutation
Mutant types
Spontaneous and induced mutation
Detecting mutagens: the Ames test
11. Variations in Chromosome Structure
Deletions
Duplications
Inversions
Translocations
Robertsonian fusions/dissociations
12. Variations in Chromosome Number Euploidy and aneuploidy
Monoploidy
Polyploidy: Autopolyploidy and Allopolyploidy
Aneuploidy: meiotic nondisjunction, monosomy, trisomy
Somatic aneuploidy: mitotic nondisjunction, sexual mosaics
B chromosomes
13. Quantitative Genetics
Quantitative traits
Genes and environment
Phenotypic distribution and norms of reaction
Genetic basis of quantitative traits: Johannsen’s experiment
Polygenic inheritance: Nilsson-Ehle’s experiment
Heritability
14. Population Genetics Mendelian population
Genetic variation
Allele and genotype frequencies
Random mating and Hardy-Weinberg equilibrium
Evolutionary forces: mutation, migration, random drift, and selection
Teaching labs Lab 1. GENETIC ANALYSIS IN CORN (Zea mays): INTERACTION AND EPISTASIS.
Description of shape and colour of F2 seeds (kernel) obtained from different crosses
Hypothesis testing (chi-square)
Inference of genotype and phenotype of generations P and F1
Genetic and Biochemistry basis of the observed phenotypes

Lab 2. SETTING UP EXPERIMENTS USING Drosophila.
Raising and handling Drosophila in the lab
Life cycle
Analysing fruit flies: distinguishing sex, why isolating virgin females, observation of some mutant phenotypes

Lab 3. LINKAGE MAPPING IN D. melanogaster.
Reciprocal crosses between wild and three-factor mutant (yellow, white y miniature)
Analysis of Offspring (F1)
Testcrosses, analysis of offspring (F2) and statistical approach to determine the linkage order and map distances between the three loci on Drosophila chromosomes (calculation of frequencies of recombination, coincidence coefficient and interference)

Lab 4. POLYTENE CHROMOSOME OF THE SALIVARY GLANDS OF D. buzzatii.
Extraction of larval salivary glands
Staining with orcein
Identification of polytene chromosomes and the sex of larva
Chromosome puffing

Lab 5. COMPUTER LAB.
Introduction to bioinformatics databases and resources offered through the NCBI
Getting familiar with the following databases: BOOKS, TAXONOMY, OMIM.

Planning
Methodologies / tests Ordinary class hours Student’s personal work hours Total hours
Laboratory practice 15 22.5 37.5
Mixed objective/subjective test 2.5 0 2.5
Supervised projects 8 16 24
Guest lecture / keynote speech 24 60 84
 
Personalized attention 2 0 2
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Laboratory practice
The teaching labs are designed to allow groups of students to work side by side in order to (i) better comprenhend certain issues of the syllabus and (ii) see “real” science as approachable, accessible and exciting.
Each lab relies on a theoretical basis (teacher explanation + reading assignment) and a hands-on activity.
Students shall pass a short test before the teaching lab in order to assess their comprehension of the reading assigned beforehand.
Mixed objective/subjective test The final exam may be composed by a multiple choice/true-false set, short-answer questions, and a set of genetic problems.
Supervised projects Group work: students will be assigned a maximum of four sets of genetic problems, whose written solutions shall be handed in for evaluation. Additional group activities may be assigned for the sake of a better comprehension of particular issues.
Guest lecture / keynote speech Master class and reading groups: the teacher will explain the main contents of each lesson and will assign texts for further reading. Working with small groups will allow the exchange of ideas among students, under direct supervision of the lecturer.

Personalized attention
Methodologies
Supervised projects
Description
All students are welcome to receive regular tuition in both theory and practical issues of the subject. Individual or group appointments may be arranged with the teacher.

Assessment
Methodologies Description Qualification
Mixed objective/subjective test C. The final exam (test, short-answer, set of problems) aims at evaluating student's performance when (i) dealing with theoretical concepts, (ii) explaining genetic issues, and (iii) developing problem-solving strategies.
60
Laboratory practice B. To pass the subject, each student must pass the compulsory lab assessment, which includes two lab tests (pre-labs = 5 points; post-labs = 10 points) and laboratory attendance. 15
Supervised projects A. Grading shall reflect the students' comprehension of the topic, their analytical skills, as well as how well the assignment is written and presented.
Group work is not mandatory in order to pass the subject.
25
 
Assessment comments

To pass the subject, students must score at least 50% pass in Laboratory Practice as well as 50% in Mixed objective/subjective test.

Marks obtained in Laboratory Practice or Mixed objective/subjective test will be kept for the July examination session if scored at least 50% pass.

Marks obtained in Mixed objective/subjective test will be kept for the next two years (i.e., four consecutive examination sessions) if scored at least 50% pass.

Some courses appear as Not attended in the exam notification.

The course will appear as "Not attended" only if the student did not attended/handed in any of the labs, examinations, and/or supervised projects.

Should a student score the maximum mark in both the mixed objective/subjective test and the supervised projects (6 and 2.5 points, respectively), but fails in laboratory practice, the final grading will be 4.5 (fail).


Sources of information
Basic

TEXTBOOK.

Russell PJ (2010) iGenetics. A Molecular Approach. 3rd edition. Pearson International Edition. ISBN: 0-321-61022-9.

Complementary

FREE ONLINE 

Griffiths AJF, Miller JH, Suzuki DT, et al. (2000) An Introduction to Genetic Analysis. 7th edition. New York: W. H. Freeman.
Available from: http://www.ncbi.nlm.nih.gov/books/NBK21766/

Recommendations
Subjects that it is recommended to have taken before
Xenética molecular/610G02020
Xenética de poboacións e evolución/610G02021
Citoxenética/610G02022

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus
Estatística/610G02005
Citoloxía/610G02007
Histoloxía/610G02008
Bioquímica: Bioquímica I/610G02011

Other comments

A asistencia ás clases maxistrais posibilita a comprensión dos temas da asignatura e posibilita o tratamento de dúbidas ou cuestións que poidan xurdir no transcurso das explicacións.

A elaboración dos traballos tutelados é útil para completar o estudo e acadar resultados optimos de cara o aprendizaxe da materia.

As dúbidas e dificultades que formule calquera aspecto da materia deberán de resolverse o antes posible, formulándose nas clases presenciais ou acudindo ás titorías individualizadas.

A asistencia a titorías (individuais o en grupo) facilita a resolución correcta dos problemas, cuestións ou dúbidas que xurdan no transcurso da preparación da materia, e reforzan o aprendizaxe. Aconsellase o alumnado que as utilice.

O estudo debe considerar a consulta habitual de polo menos a bibliografía recomendada.

O estudo e traballo en grupo favorece a comprensión e desenvolve o espírito crítico.



(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.