Datos Identificativos 2013/14
Asignatura (*) Electrónica Código 730112306
Titulación
Enxeñeiro Naval e Oceánico
Descriptores Ciclo Período Curso Tipo Créditos
1º e 2º Ciclo 2º cuadrimestre
Terceiro Obrigatoria 5
Idioma
Castelán
Prerrequisitos
Departamento Enxeñaría Industrial
Coordinación
Perez Serantes, Roberto Jose
Correo electrónico
roberto.perez@udc.es
Profesorado
Perez Serantes, Roberto Jose
Correo electrónico
roberto.perez@udc.es
Web http://campusvirtual.udc.es/moodle/
Descrición xeral

Competencias do título
Código Competencias da titulación
A3 Desenvolver, programar e aplicar métodos analíticos e numéricos para a análise de modelos lineais e non lineais de todos os ámbitos da Enxeñaría Naval e Oceánica.
B1 Aprender a aprender.
B2 Resolver problemas de forma efectiva.
B3 Aplicar un pensamento crítico, lóxico e creativo.
B4 Traballar de forma autónoma con iniciativa.
B5 Traballar de forma colaborativa.
B6 Comportarse con ética e responsabilidade social como cidadán e como profesional.
B7 Comunicarse de maneira efectiva nun entorno de traballo.
B8 Actitude orientada ao traballo persoal intenso.
B9 Capacidade de integrarse en grupo de traballo.
B10 Actitude orientada á análise.
B11 Actitude creativa.
B12 Capacidade para encontrar e manexar a información.
B13 Capacidade de comunicación oral e escrita.
B14 Manexo de sistemas asistidos por ordenador.
B16 Fixar obxectivos e tomar decisións.
B18 Capacidade de abstracción, comprensión e simplificación de problemas complexos.
C1 Expresarse correctamente, tanto de forma oral coma escrita, nas linguas oficiais da comunidade autónoma.
C2 Dominar a expresión e a comprensión de forma oral e escrita dun idioma estranxeiro.
C3 Utilizar as ferramentas básicas das tecnoloxías da información e as comunicacións (TIC) necesarias para o exercicio da súa profesión e para a aprendizaxe ao longo da súa vida.
C4 Desenvolverse para o exercicio dunha cidadanía aberta, culta, crítica, comprometida, democrática e solidaria, capaz de analizar a realidade, diagnosticar problemas, formular e implantar solucións baseadas no coñecemento e orientadas ao ben común.
C6 Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.
C7 Asumir como profesional e cidadán a importancia da aprendizaxe ao longo da vida.
C8 Valorar a importancia que ten a investigación, a innovación e o desenvolvemento tecnolóxico no avance socioeconómico e cultural da sociedade.

Resultados de aprendizaxe
Competencias de materia (Resultados de aprendizaxe) Competencias da titulación
Conocer el funcionamiento de los principales componentes electrónicos (diodos, transistores y amplificadores operacionales). A3
B1
B2
B3
B4
B6
B8
B10
B12
B13
B14
C2
C3
C4
C6
C7
C8
Analizar de forma práctica (simulación y montajes reales) y teórica circuitos electrónicos básicos. A3
B1
B2
B3
B4
B5
B7
B9
B10
B11
B12
B13
B14
B16
B18
C1
C2
C3
C6
C7
C8
Manejo de los equipos de medida (osciloscopio y polímetro) y de alimentación (generador de señal y funete de alimentación) necesarios para analizar montajes reales de circuitos electrónicos básicos. A3
B2
B10
Manejo de software para la simulación de circuitos electrónicos. A3
B14
C2
C3

Contidos
Temas Subtemas
1. Introducción. Conceptos generales. 1.1. Fuentes de Tensión y de Corriente.
1.2. Teoremas de Thévenin, Norton y Superposición.
1.3. Carga y descarga del condensador.
1.4. Amplificadores. Parámetros fundamentales.
2. Amplificador Operacional Ideal. 2.1. Modelo Ideal. Parámetros Fundamentales
2.2. Circuitos Básicos.
2.2.1. Amplificador Inversor.
2.2.2. Amplificador No Inversor
2.2.3. Sumador
2.2.4. Seguidor de Tensión.
2.2.5. Amplificador Diferencial.
2.2.6. Integrador
2.2.7. Diferenciador
2.2.8. Trigger Smith
3. Fundamentos de los Semiconductores. Unión PN. 3.1. Cristales de Silicio. Enlaces Covalentes.
3.2. Creación de pares electrón hueco.
3.3. Proceso de Recombinación.
3.4. Semiconductores Intrínsecos.
3.5. Semiconductores Extrínsecos
3.6. Union PN sin polarizar.
3.7. Unión PN polarizada.
4. Diodos. 4.1. Estados del diodo.
4.2. Modelo del diodo.
4.3. Diodo zener.
4.4. Circuitos básicos con diodos.
4.4.1. Circuitos limitadores.
4.4.2. Circuitos de Rectificación.
4.4.2.1. Rectificadores con diodos.
4.4.2.2. Rectificadores de precisión
4.4.3. Circuitos fijadores
4.4.4. Doblador de tensión.
4.5. Análisis mediante el método de punto crítico
5. Transistor Bipolar (BJT). 5.1. Principios Físicos.
5.1.1. Transistor sin polarización
5.1.2. Transistor Polarizado.
5.1.3. Curvas características de Entrada y de Salida
5.1.4. Zonas de Funcionamiento.
5.2. Recta de carga.
5.3. Modelo estático.
5.4. Análisis de Punto de Trabajo.
5.5. Circuitos de Polarización.
5.6. El transistor como interruptor.
6. Transistor de Efecto Campo (FET) 6.1. Transistores de efecto campo de puerta aislada MOSFET.
6.1.1. Mosfet de Enriquecimiento
6.1.1.1. Principios Físicos.
6.1.1.2. Zonas de funcionamiento.
6.1.1.3. Curvas características de entrada y de salida.
6.1.1.4. Modelo estáticos.
6.1.2. Mosfet de Deplexión.
6.1.2.1. Principios Físicos.
6.1.2.2. Zonas de funcionamiento.
6.1.2.3. Curvas características de entrada y de salida
6.1.2.4. Modelo estáticos.
6.1.3. Análisis de Punto de Trabajo.
6.1.4. Circuitos de Polarización.
6.2. Transistores de efecto campo de unión JFET.
6.2.1. Principios Físicos.
6.2.2. Zonas de funcionamiento.
6.2.3. Curvas características de entrada y de salida
6.2.4. Modelo estáticos..
6.2.5. Análisis de Punto de Trabajo.
6.2.6. Circuitos de Polarización.
6.3. El transistor de efecto campo como resistencia.
6.4. El transistor de efecto campo como interruptor.
7. Amplificadores con transistores. 7.1. Condensadores de acoplo y desacoplo.
7.2. Análisis en continua y para pequeña señal.
7.2.1. Rectas de carga.
7.3. Modelos para pequeña señal de transistores FET y BJT.
7.4. Configuraciones básicas con transistores BJT.
7.5. Configuraciones básicas con transistores FET.
7.6. Amplificadores Multietapa.
8. Amplificador Operacional Real. 8.1. Estructura interna.
8.1.1. Amplificador Diferencial de Entrada
8.1.2. Etapa Intermedia de Ganancia
8.1.3. Etapa de Potencia de Salida
8.2. Características.
8.2.1. Impedancias de entrada y de salida.
8.2.2. Ancho de Banda.
8.2.3. Tensión offset de entrada
8.2.4. Corriente offset de entrada.
8.2.5. Rechazo en modo común.
8.2.6. Slew Rate.
8.3. Amplificador Operacional LM741.
9. Generadores de Señal y Circuitos Multivibradores. 9.1. Osciladores
9.1.1. Osciladores senoidales
9.1.1.1. Criterio de Barkhausen
9.1.2. Osciladores de cambio de fase
9.1.3. Osciladores con circuitos resonantes
9.1.4. Estructura general del circuito oscilador
9.1.4.1. Oscilador Hartley
9.1.4.2. Oscilador Colpitts
9.1.5. Osciladores con cristal.
9.2. Circuitos Multivibradores
9.2.1. Aestable
9.2.2. Biestable
9.2.3. Monoestable
9.3. Generador de Onda Triangular.
9.4. Temporizador 555. Montajes Básicos.

Planificación
Metodoloxías / probas Horas presenciais Horas non presenciais / traballo autónomo Horas totais
Prácticas a través de TIC 0 1 1
Prácticas de laboratorio 0 1 1
Proba obxectiva 4 20 24
Sesión maxistral 0 1 1
Solución de problemas 0 80 80
 
Atención personalizada 18 0 18
 
*Os datos que aparecen na táboa de planificación son de carácter orientativo, considerando a heteroxeneidade do alumnado

Metodoloxías
Metodoloxías Descrición
Prácticas a través de TIC No hay docencia presencial. Asignatura a extinguir.
Prácticas de laboratorio No hay docencia presencial. Asignatura a extinguir. Habrá un examen de practicas de laboratorio para los alumnos que no tengan aprobadas las mismas. Consistirá en el montaje real y simulación de circuitos electrónicos básicos utilizando los aparatos de medida y de alimentación básicos (osciloscopio, funete alimentación, generador de señal y polímetro) y el programa de simulación electrónica Orcad Pspice.
Proba obxectiva La prueba objetiva escrita tiene el objetivo de comprobar si el alumno ha adquirido las competencias fijadas como objetivo de esta asignatura.
Sesión maxistral No hay docencia presencial. Asignatura a extinguir. En las sesiones magistrales se desarrollan los contenidos de la asignatura tanto a nivel teórico como práctico.
Solución de problemas No hay docencia presencial. Asignatura a extinguir. Durante las sesiones magistrales se plantean supuestos prácticos para su resolución. En dicha resolución se fomenta la participación del alumno.

Atención personalizada
Metodoloxías
Proba obxectiva
Sesión maxistral
Solución de problemas
Descrición
No hay docencia presencial. Asignatura a extinguir. Tutorías especiales para los examenes.

Avaliación
Metodoloxías Descrición Cualificación
Proba obxectiva La prueba objetiva escrita tiene el objetivo de comprobar si el alumno ha adquirido las competencias fijadas como objetivo de esta asignatura. 100
 
Observacións avaliación

Fontes de información
Bibliografía básica

- Norbert R. Malik, Circuitos Electrónicos Análisis, Simulación y Diseño, Prentice Hall , 1998, Capítulo de libro,

-Malvino, Principios de Electrónica, McGraw Hill , 1993, Capítulo de libro,

  • Recursos disponibles en la Facultad Virtualde la UDC (tutoriales, problemas, software, FAQ, tutorias online etc.)
Bibliografía complementaria

-Muhammad H. Rashid, Circuitos Microelectrónicos. Análisis y Diseño, Thomson-Paraninfo , 2002, Capítulo de libro,

-Roy W. Godoy, OrCAD PSpice para Windows Volumen I: Circuitos DC y AC, Prentice Hall, 2003, Capítulo de libro,

-Roy W. Godoy, OrCAD PSpice para Windows Volumen II: Dispositivos, circuitos y amplificadores operacionales, Prentice Hall, 2003, Capítulo de libro,


Recomendacións
Materias que se recomenda ter cursado previamente
Electrotecnia y Electrónica/730112206

Materias que se recomenda cursar simultaneamente

Materias que continúan o temario

Observacións


(*)A Guía docente é o documento onde se visualiza a proposta académica da UDC. Este documento é público e non se pode modificar, salvo casos excepcionais baixo a revisión do órgano competente dacordo coa normativa vixente que establece o proceso de elaboración de guías