Identifying Data 2014/15
Subject (*) Técnicas Computacionais Aplicadas á Enxeñaría Mariña Code 631480201
Study programme
Mestrado Universitario en Enxeñaría Mariña
Descriptors Cycle Period Year Type Credits
Official Master's Degree 2nd four-month period
First Optativa 3
Language
Spanish
Prerequisites
Department Enerxía e Propulsión Mariña
Coordinador
Baaliña Insua, Alvaro
E-mail
alvaro.baalina@udc.es
Lecturers
Baaliña Insua, Alvaro
E-mail
alvaro.baalina@udc.es
Web
General description A materia baséase no coñecemento e aplicación dos métodos computacionais en procesos de transferencia de calor e fluxo de fluídos, para o deseño e cálculo de equipos e sistemas
de instalacións mariñas.
Acadarase destreza suficiente para coñecer as limitacións do método e a precisión dos resultados obtidos, tendo en conta as hipóteses de partida.

Study programme competencies
Code Study programme competences
A20 Capacidade para desenrolar tarefas de análise e síntese de problemas teórico-prácticos en base a conceptos adquiridos noutras disciplinas do ámbito marítimo, mediante fundamentos físico-matemáticos.
A21 Operar, reparar, manter, reformar, deseñar e optimizar a nivel de xestión as instalacións industriais relacionadas coa enxeñaría mariña.
A22 Capacidade para desenrolar métodos e procedementos para gañar competitividade na industria marítima.
B1 Aprender a aprender.
B2 Resolver problemas de forma efectiva.
B3 Comunicarse de maneira efectiva nun entorno de traballo.
B4 Traballar de forma autónoma con iniciativa.
B5 Traballar de forma colaborativa.
B6 Comportarse con ética e responsabilidade social como cidadán e como profesional.
B7 Capacidade para interpretar, seleccionar e valorar conceptos adquiridos noutras disciplinas do ámbito marítimo, mediante fundamentos físico-matemáticos.
B10 Comunicar por escrito e oralmente os coñecementos procedentes da linguaxe científica.
B11 Capacidade para resolver problemas con iniciativa, toma de decisións, creatividade, razoamento crítico e de comunicar e transmitir coñecementos, habilidades e destrezas.
C1 Expresarse correctamente, tanto de forma oral coma escrita, nas linguas oficiais da comunidade autónoma.
C2 Dominar a expresión e a comprensión de forma oral e escrita dun idioma estranxeiro.
C4 Desenvolverse para o exercicio dunha cidadanía aberta, culta, crítica, comprometida, democrática e solidaria, capaz de analizar a realidade, diagnosticar problemas, formular e implantar solucións baseadas no coñecemento e orientadas ao ben común.
C6 Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.
C7 Asumir como profesional e cidadán a importancia da aprendizaxe ao longo da vida.
C8 Valorar a importancia que ten a investigación, a innovación e o desenvolvemento tecnolóxico no avance socioeconómico e cultural da sociedade.

Learning aims
Subject competencies (Learning outcomes) Study programme competences
Analysis and synthesis of the concepts of computational methods and their application in practical cases with heat transfer and fluid flow processes combined. Capability for modeling processes by means computational methods. . AC20
AC21
AC22
Critical reasoning about applicable physical models. Study habits, structuring information and management of specialized software. BC1
BC2
BC3
BC4
BC5
BC6
BC7
BC10
BC11
CC1
CC2
CC4
CC6
CC7
CC8

Contents
Topic Sub-topic
1.- The governing equations of Fluid Dynamics and Heat Transfer. 1.1 Conservation equations. Integral and differential form.
1.2. Conduction, convection and radiation
2.-Partial Differential Equations. 2.1. Classification
2.2. Behavior
3.- Grids 3.1. Transformation of equations
3.2. Grid generation
4.- CFD Techniques 4.1. Lax-Wendroff
4.2. Maccormack's
5.- Applications 5.1. Fluid flow applications
5.2. Heat Transfer applications

Planning
Methodologies / tests Ordinary class hours Student’s personal work hours Total hours
Guest lecture / keynote speech 14 14 28
Problem solving 7 14 21
Supervised projects 7 7 14
Objective test 2 6 8
 
Personalized attention 4 0 4
 
(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies
Methodologies Description
Guest lecture / keynote speech There will be a detailed explanation of the contents of the material, distributed across topics. The student will have a typed copy of the subject matter in each keynote session. Students are encouraged to participate in class, through comments linking the theoretical contents with real life experiences.
Problem solving Problems will be solved for each item proposed, allowing the application of mathematical models appropriate to each case, including managing software, applying the most appropriate assumptions, the theoretical relation developed in lectures and relation with professional practice
Supervised projects Problems more difficult than those solved in class or issues of special relevance.
Objective test The degree of acquired knowledge about the contents assessed, taking into account both theory and problem solving.

Personalized attention
Methodologies
Problem solving
Supervised projects
Description
The student is guided in all contents, specially those difficult to understand. The corresponding revisions of examinations are also included. Channels of information and contact will be the Virtual School together individualized tutoring for six hours throughout the week.

Assessment
Methodologies Description Qualification
Guest lecture / keynote speech Attendance at the sessions will count as part of the final grade
Assessed competencies: B1, B2, B3, B4, B5, B6, B7, B10, B11, C1, C2, C4, C6, C7, C8
10
Problem solving Problem solving, if possible, with software.
Assessed competencies: A20; A21; A22; B2; B4; B5; B7; B11
10
Objective test The degree of acquired knowledge about the learning contents is assessed, taking into account both the theoretical part and the problems. Understanding of basic topics, problem solving strategies , evolution and capacity to analyse criticaly are assessed.


Two term exams contribute to 70% of the qualification. Final objetive test with the same contribution is programmed for students who failed term exams.
Assessed competencies: A20; A21; A22; B1; B2; B3; B4; B5; B6; B7; B10; B11; C1; C2; C4; C6; C7; C8
70
Supervised projects Presentation and defense of the work. Structure, neatness, originality and expository method are valued.
Assessed comptencies: A20; A21; A22; B2; B3; B4; B5; B6; B7; B10; B11; C1;C6
10
 
Assessment comments
A final examination to collect all course methodologies and representing 100% of the grade, is planned for those students with assistance less than 80% of programmed teaching methodologies (85 % of supervised projects), as long as they pass mandatory laboratory practices.

The evaluation criteria listed in Table A-III 2, of the STCW Code, as amended, relating to this matter will be taken into account when designing and conducting evaluation.



Sources of information
Basic Post, Scott (2011). Applied and computational fluid mechanics . Jones and Bartlett Publishers
John D. Anderson (1995). Computational Fluid Dynamics. McGrawHill
Patankar, Suhas V. (1980). Numerical heat transfer and fluid flow. Taylor & Francis

Complementary


Recommendations
Subjects that it is recommended to have taken before

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Other comments


(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.