		Teaching	Guide			
	Identifying Data 2015/16			2015/16		
Subject (*)	Análise Estrutural Avanzado			Code	610509005	
Study programme	Mestrado en Investigación Quím	ica e Química In	dustrial	'	-	
		Descri	otors			
Cycle	Period	Yea	ır	Туре	Credits	
Official Master's Degre	e 1st four-month period	Fire	st	Obligatoria	3	
Language	SpanishGalicianEnglish				·	
Teaching method	Face-to-face					
Prerequisites						
Department	Química Fundamental					
Coordinador			E-mail			
Lecturers	Rodriguez Gonzalez, Jaime		E-mail	jaime.rodriguez@	jaime.rodriguez@udc.es	
	Sanchez Andujar, Manuel			m.andujar@udc.	es	
Web						
General description	This module is focused in the adv	vanced aspects	which are esser	itial in subjects at highest	level in Chemistry. Discussions	
	will be centered in the most impo	ortant tasks in the	basic chemical	research directed to own	n or interdisciplinary studies. The	
	five main subjects in the module	will be extended	in 15 ECTS and	d they will be intensively	given by the three associated	
	universities during the first quarte	er.				
	These subjects will be simultaneous	ously taught by t	he three univers	sities during the months o	of September and October of each	
academic year.						

	Study programme competences / results
Code	Study programme competences / results
A1	Define concepts, principles, theories and specialized facts of different areas of chemistry.
A2	Suggest alternatives for solving complex chemical problems related to the different areas of chemistry.
A4	Innovate in the methods of synthesis and chemical analysis related to the different areas of chemistry
B1	Possess knowledge and understanding to provide a basis or opportunity for originality in developing and / or applying ideas, often within a
	research context
B2	Students should apply their knowledge and ability to solve problems in new or unfamiliar environments within broader (or multidisciplinary)
	contexts related to their field of study.
B4	Students should be able to communicate their conclusions, and the knowledge and the reasons that support them to specialists and
	non-specialists in a clear and unambiguous manner
B5	Students must possess learning skills to allow them to continue studying in a way that will have to be largely self-directed or autonomous.
В7	Identify information from scientific literature by using appropriate channels and integrate such information to raise and contextualize a
	research topic
B10	Use of scientific terminology in English to explain the experimental results in the context of the chemical profession
B11	Apply correctly the new technologies to gather and organize the information to solve problems in the professional activity.

Learning outcomes			
Learning outcomes	Stud	y progra	mme
	con	npetenc	es/
		results	
Be able to propose a molecular structure of both organic and inorganic Compostos by using spectroscopic techniques or mass	AC1	BC1	
spectrometry techniques.	AC2	BC2	
	AC4	BC4	
		BC5	
		BC7	
		BC10	
		BC11	

Be able to identify in a mass spectrum the base peak, molecular ion (main peak and isotope peaks) and some peak	AC1	BC1	
fragmentations.	AC2	BC2	
Be able to identify acronyms in the different ionization techniques.	AC4	BC4	
Be able to manually determine isotopic compositions of molecules using isotopomers and isotopologues.		BC5	
Be able to identify common elements such S, Cl, Br based on isotopic patterns.		BC7	
Be able to estimate the maximum number of carbons based on the M+1 peak		BC10	
Be able to get possible molecular formulaes for a given mass using de rule of 13.		BC11	
Be able to use the nitrogen rule in the number of possible formulas.			
Be able to determine the degree of unsaturation from an empirical formula (DBE)			
Be able to interpret NMR magnetization through pulse sequences.			
Be able to interpret basic concepts as relaxation processes in NMR.			
Be able to describe or outline basic experiment by NMR pulses and NMR acquisition parameters (SI, O1, SW, AQ, DW,			
FIDRES, P1, D1).			
Be able to interpret type of NMR data such absorption and dispersion.			
Be able to distinguish NMR in time scale (FID) and NMR frequency scale (NMR spectrum) and to describe the Fourier			
Transformation in NMR.			
Be able to describe the basic work-up of two-dimensional NMR experiments.			
Be able to identify molecular fragments by using an heteronuclear experiments (HSQC / HMQC). Use of the DEPT-135 Edited			
HSQC experiment.			
Be able to gather information from NOE experiments.			
Use of essential difractometric techniques for a X-RAy single crystal experiments in the structural determination of small			
molecules.			

Contents		
Topic Sub-topic		
1. The mass spectrometry	Basic principles. Isotopic patterns	
	High resolution mass spectrometry.	
2. Monodimensional NMR experiments.	1D-NMR: vectorial model in pulse experiments	
Heteronuclear NMR spectroscopy.	NMR spectral parameters: signal integration and chemical shifts.	
	Doble irradiation experiments	
	1D-NMR pulse sequences	
3. Bidimensional NMR experiments.	Heteronuclear correlation experiments.	
	2D-NMR experiments:COSY basic principles	
	NOE experiments.	
	Heteronuclear 2D-experiments	
4 Monocrystal X-Ray difraction		
5. Another structural analysis techniques		

	g		
Competencies /	Teaching hours	Student?s personal	Total hours
Results	(in-person & virtual)	work hours	
B1 B2 B4 B5 B7 B10	12	30	42
B11			
B1 B2 B4 B5 B7 B10	1	4	5
B11			
A1 A2 A4 B1 B2 B4	1	7	8
B5 B7 B10 B11			
A1 A2 A4	10	10	20
	0		0
	Results B1 B2 B4 B5 B7 B10 B11 B1 B2 B4 B5 B7 B10 B11 A1 A2 A4 B1 B2 B4 B5 B7 B10 B11	Results (in-person & virtual) B1 B2 B4 B5 B7 B10 B11 B1 B2 B4 B5 B7 B10 B11 A1 A2 A4 B1 B2 B4 B5 B7 B10 B11 A1 A2 A4 10	Results (in-person & virtual) work hours B1 B2 B4 B5 B7 B10 12 30 B11 B1 B2 B4 B5 B7 B10 1 4 B11 A1 A2 A4 B1 B2 B4 1 7 B5 B7 B10 B11 A1 A2 A4 10 10

	Methodologies
Methodologies	Description
Seminar	It is proposed to carry out 12 sessions of seminars-problems of small groups where the students will solve sets of proposed
	problems presented by the teacher in handouts. The students will have in advance the problem on the moodle platform, in that
	form student will individuially elaborate the answers before the classes. Seminars will be used also for the resolution of doubts
	theoretical explanations. Attendance is mandatory.
Supervised projects	This monitored activity will be directed in solving exercises, clarification of doubts about the theory or practice, readings or
	other proposed tasks, as well as presentations, discussions or comments made individually by students or in small groups. In
	many cases teachers will require from students writen answers in advance. Attendance at these classes is mandatory.
Mixed	Final test will contribute to the assessment of the level of knowledge and skills acquired by students.
objective/subjective	
test	
Guest lecture /	In these large group sessions the theoretical contents along with relevant illustrative examples are developed. The students
keynote speech	will have the material to be taught in advance, before conducting the activity. The active participation of students will be
	encouraged.

	Personalized attention
Methodologies	Description
Supervised projects	Students who have special difficulties with any aspects of the subjects, should contact the hours of tutoring with the teacher to
Seminar	receive the necessary support.

		Assessment	
Methodologies	Competencies /	Description	Qualification
	Results		
Supervised projects	B1 B2 B4 B5 B7 B10		0
	B11		
Mixed	A1 A2 A4 B1 B2 B4		0
objective/subjective	B5 B7 B10 B11		
test			
Seminar	B1 B2 B4 B5 B7 B10		0
	B11		

Assessment comments

The assessment of this course will be done through continuous monitoring and conducting a final test, Access to such test will be conditioned on a minimum participation of 80% of the mandatory classroom teaching activities (seminars and supervised work).

Continuous assessment (N1) will count 40% of the final grade, and it will consist of two components: seminars and tutored projects.

Important aspects of evaluation are: problems solving and individual cases (15%), performing work and writings (10%) reports, oral presentation (10%) and oral questions during the course (5%).

The final exam (N2) will cover the entire contents of the subject.

The grade will be obtained as a result of applying the following formula:

Final grade = 0.4 * 0.6 * N1 + N2

N1 is the corresponding numerical grade to the continuous assessment (scale 0-10) and N2 is the numerical grade of the final examination (scale 0-10).

Non-first timer students have the same system of class attendance to those studying the subject for the first time.

Sources of information

Basic	- Clegg, William (1998). Crystal Structure Determination. Oxford University Press
	- Lifshin, Eric (1999). X-ray Characterization of Materials. Wiley-VCH
	- Crews, P, Rodríguez, J., Jaspers, M. (2010). Organic Structure Analysis. 2nd Ed. Oxord University Press; New York
	- Günther, H. (1995). NMR Spectroscopy, Basic principles, concepts, and applications in Chemistry. 2nd Ed. John
	Wiley
	- Gross, J. H. (2004). Mass Spectrometry. Springer
Complementary	- Smart, Lesley and Moore, Elaine A. (2012). Solid state chemistry : an introduction. CRC Press, (4 ed.).
	- Hesse, M. (1995). Métodos Espectroscópicos en Química Orgánica. Madrid, Síntesis
	- Silvestein R. M.; Webster, F. X., Kiemle, D. J. (2005). Spectrometric Identification of Organic Compounds. 7th Ed.
	Wiley
	- Donald E. Sands (1988). Introducción a la cristalografia. Ed. Reverté
	- Glusker, Jenny P. and Trueblood, Kenneth N. (1985). Crystal Structure Analysis, a Primer. Oxford University Press,
	(2 ed.)
	1

Recommendations
Subjects that it is recommended to have taken before
Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus
Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.