		Teachin	g Guide				
Identifying Data					2015/16		
Subject (*)	Química Física Avanzada			Code	610G01020		
Study programme	Grao en Química			'			
		Desc	riptors				
Cycle	Period	Ye	ear	Туре	Credits		
Graduate	1st four-month period	For	urth	Obligatoria	6		
Language	SpanishEnglish		'		'		
Teaching method	Face-to-face						
Prerequisites							
Department	Química Física e Enxeñaría Quír	mica 1					
Coordinador	Iglesias Martinez, Emilia		E-mail	emilia.iglesias@	emilia.iglesias@udc.es		
Lecturers	Brandariz Lendoiro, Maria Isabel E-mail		i.brandariz@udc	i.brandariz@udc.es			
	Iglesias Martinez, Emilia			emilia.iglesias@udc.es			
Web	campusvirtual.udc.es						
General description	KEY WORDS: ionic interactions	and molecular t	transport phenom	ena. Rate equation and i	reaction mechanisms. Chemical		
	Kinetic Theories. Homogeneous	catalysis. Introd	duction to electro	chemical kinetics. Macror	nolecules and colloids.		
	DESCRIPTION: Advanced Physi	ical Chemistry a	addresses the ph	enomenological study of	the interactions between ions and		
	molecules, which allow us to und	lerstand the cor	nfiguration of mad	cromolecules of chemical	and biological interest. Transport		
	phenomena in solution makes po	ssible the char	acterization of ma	acromolecules and are ce	entral to the application of certain		
	techniques to kinetic study of rea	ctions. Chemic	al kinetics introdu	ices the time variable in t	he study of a chemical reaction,		
	analyzing the factors that modify	reaction rate in	order to determi	ne the rate equation, and	finally to propose a reaction		
	mechanism at the molecular leve	el to interpret the	e observed macro	oscopic reaction.			

	Study programme competences
Code	Study programme competences
A1	Ability to use chemistry terminology, nomenclature, conventions and units
А3	Knowledge of characteristics of the different states of matter and theories used to describe them
A4	Knowledge of main types of chemical reaction and characteristics of each
A10	Knowledge of chemical kinetics, catalysis and reaction mechanisms
A14	Ability to demonstrate knowledge and understanding of concepts, principles and theories in chemistry
A19	Ability to follow standard procedures and handle scientific equipment
A20	Ability to interpret data resulting from laboratory observation and measurement
A22	Ability to plan, design and develop projects and experiments
A23	Critical standards of excellence in experimental technique and analysis
A25	Ability to recognise and analyse link between chemistry and other disciplines, and presence of chemical processes in everyday life
A27	Ability to teach chemistry and related subjects at different academic levels
B1	Learning to learn
В3	Application of logical, critical, creative thinking
B4	Working independently on own initiative
C3	Ability to use basic information and communications technology (ICT) tools for professional purposes and learning throughout life
C6	Ability to assess critically the knowledge, technology and information available for problem solving

Learning outcomes	
Learning outcomes	Study programme
	competences

Methodology:	A3	В3	C3
· Be able to plan, design, and perform experiments related to the transport of matter and charge transport.	A19		
· Be able to propose and design a kinetic study of a chemical reaction.	A20		
· Simple software application to the quantitative analysis of kinetic data.	A22		
· Interpretation of kinetic results on the basis of reaction mechanisms.	A23		
- Simulation / prediction of unpublished data from the rate equation	A27		
Conceptual:	A1	В3	
· Knowledge of interionic interactions and inter-or intramolecular interactions and their relationship with association	A4		
phenomena, self-aggregation or molecular conformation.	A10		
· Mastering the own methods of chemical kinetics. Interpretation at molecular level (mechanistic) of chemical reactions.	A14		
Understand and know the factors that can change the rate of a chemical reaction.			
· Understand the catalysis process and its relation to chemical-, photochemical- or electrochemical-activation			
Attitudinal:	A23	B1	СЗ
· Provide appropriate reports of an experimental study	A25	В3	C6
Analyze and critique published kinetic studies of low difficulty.	A27	B4	

	Contents		
Topic	Sub-topic Sub-topic		
lonic and molecular interactions	· Ionic interactions in the liquid phase: activity coefficient. Debye-Hucke's law. Ionic		
	strength.		
	· Molecular interactions. Dipole moment. Polarizability: equation of Clausius-Mossotti		
	Dipolar interactions. Hydrophobic interaction: self-aggregation and molecular		
	conformation.		
	-Colloids: direct and reverse micelles, biological membranes.		
	Macromolecules		
Transport phenomena	· Flux. Diffusion. Fick's first lay. Stokes-Einstein equation.		
	- Thermal conductivity		
	· Electric conductivity: the Deby-Huckel-Onsager theory.		
	· Viscosity		
Rate equation and reaction mechanism	· Integrated rate equation. Initial rates. Order of reaction. The method of flooding.		
	Physical properties in kinetic studies. Experimental techniques.		
	· Complex reaction schemes: parallel and concurrent reactions, reversible reactions,		
	consecutive reactions.		
	The steady-state approximation.		
	· Reaction mechanisms: elementary reactions. Deduction of reaction mechanisms.		
Kinetic Theories and their applications	Collisions theory: the frequency factor		
	· Transition state theory. The activated complex. Statistical thermodynamics		
	approach. Activation parameters. Potential energy surfaces.		
	· Reactions in the gas phase: Lindeman mechanism		
	· Reactions is solution. Diffusion controlled reactions		
	· Electron transfer reactions: Marcus theory		
	Photochemical reactions		
Catalysis	· Homogeneous, heterogeneous and microheterogeneous catalysis		
	General mechanism of catalysis: rate equations.		
	· Homogeneous catalysis: nucleophilic catalysis, acid-base catalysis,		
	· Linear free energy relations: the Swain-Scott equation, the Bronsted law, the		
	Hammett correlation, the Taft equation.		
	· Microheterogeneous catalysis; micellar catalysis, enzyme catalysis. Inhibition		

Introduction to electrochemical kinetics	Electrochemical reactions: special topics
	· Interface electrode-solution: the Gouy-Chapman model
	· Rate of charge transfer. The Butler-Volmer equation
	· Voltametry
Lab experiments	· Laboratory experiments relative to Transport phenomena, determination of rate
	equations and catalytic processes.

Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
Guest lecture / keynote speech	A25 A27 B3	21	42	63
Seminar	A27 B1 C6	7	14	21
Laboratory practice	A19 A20 A22 A23	20	40	60
	A27 B1 B4 C3			
Mixed objective/subjective test	A1 A3 A4 A10 A14	4	0	4
	A20			
Personalized attention		2	0	2

	Methodologies			
Methodologies	Description			
Guest lecture /	? In the exposition classes the teacher introduces all concepts, models, methodologies and theories of the fundamental			
keynote speech	contents of the discipline program. Through the virtual campus, the student will can find the material that complements the			
	class for his previous study and analysis. The previous reading of the subjects that expose in class, definitely, improves the			
	academic yield and facilitates the interaction student-teacher.			
Seminar	? Seminars: session to make the most important concepts and methods understandable to undergraduate students by means			
	of the resolution of questions, problems and the criticism of practical studies. One of the important objectives of the seminars			
	is to learn how to solve numerical problems, which help emphasize features in the underlying theory, and they illustrate			
	practical applications.			
Laboratory practice	?They will perform experiments related with the concepts treated in the discipline. The student will treat to reproduce simple			
	laboratory experiments under the guidance of the instructor. Each student will have to elaborate a report of each experiment,			
	following the indications of the professor, and /or the exposition / discussion of his results. It is required to pass the			
	experimental probes to can pass the overall discipline.			
Mixed	? Proposal of questions and exercises, related with the concepts introduced in the classes of theory, seminar or in Lab			
objective/subjective	experiments, to solve. The student alone will demonstrate, during a fixed time interval, the adquired knowledges and his			
test	capacity for solving exercices and/or developing conceptual questions.			

	Personalized attention
Methodologies	Description
Laboratory practice	Previously to the experimental work, the student must understant the scientific article that summarizes the experiments to be
	make. For that he will be help by his instructor, as well as, during the experiments go on. After ending the Laboratory
	experiments, the instructor will help the student in the interpretation of the results on the basis of the models developed in
	class and in the Classroom of Computing for the quantitative treatment of results.
	It recommends to the students the use of tutorials to solve all kind of doubts, questions and concepts that have not remained
	sufficiently clear, and that refer, either to the development of material concepts or to find the answers to problems introduced
	in the seminars.

Assessment			
Methodologies	Competencies	Description	Qualification

Guest lecture /	A25 A27 B3	? The participation of the student during the development of this activity, by means of	0
keynote speech		the formulation of questions that help to understand concepts or by means of the	
		proposal of alternative approaches, will be take into account in the final mark.	
Seminar	A27 B1 C6	? Seminar sessions are supported on the personal work of each student. These	20
		sessions help emphasize topics and concepts introduced in the different parts of the	
		course. They also serve of discussion scenary of the methodologies and procedures	
		applied in each case.	
		? The evaluation of this activity will be based on the personal work in seminar	
		sessions.	
_aboratory practice	A19 A20 A22 A23	? Lab experiments reflect the abillity and capacity of the student in the planning,	25
	A27 B1 B4 C3	design and development of simple experiments.	
		? Essay of different techniques in the characterisation of systems or in monitoring	
		reaction processes.	
		? Quantitative treatment of the experimental results following the models explained in	
		the lectures.	
	? Explanation of the results on the basis of the theoretical models.		
		? Submitting a lab eport to reflect the previous concepts is required.	
		? For evaluating this activity it is taken into account the lab work, the obtained results,	
		and the prepared report.	
Mixed	A1 A3 A4 A10 A14	? Performance of written examination about theoretical and practical questions,	55
objective/subjective	A20	regarding the contents treated in all parts of the course.	
test	? It is required to surpass each of the activities to pass the course. The qualification of		
		a surpassed activity will be kept in the remaining opportunities of the current academic	
		year.	
		? Failure to pass the course, the final qualification shall correspond to the average of	
		activities NON-exceeded.	
		? The maximum achievable quallification does not depend on the oppotunity in which	
		the subject is surpass.	
		? The student will obtain the qualification of No Presented when he do not take part in	
		the official examination (programming by the Faculty).	

-	Assessment	comments	

Sources of information	
Basic	- P. W. Atkins, J. de Paula (2008). Química Física, 8ª Ed Panamericana
	- Espenson J. H. (1995). Chemical kinetics and reaction mechanisms 2ª ed McGraw-Hill, New York.
	- Laidler K. J. (1994). Chemical Kinetics . Harper and Row, New York.
	- Bockris, J.O.M., Reddy, A K.N. (1998). Modern Electrochemistry 1. Ionics. 2nd ed Plenum Press, New York
Complementary	- P. L. Brezonik (1994). Chemical Kinetics and Process Dynamic in Aquatic Systems Lewis Publishers
	- P. Sanz Pedredo (1992). Físicoquímica para Farmacia y Biología Masson-Salvat Medicina
	- R. A. Jackson (2004). Mechanism in Organic Reactions Royal Society of Chemistry (RSC)
	- LEVINE I. N. (2004). Fisicoquímica 5ª ed McGraw-Hill, Madrid
	- KORITA, J, DVORAK, J., KAVAN, L. (1987). Principles of Electrochemistry. 2nd ed Wiley, Chichester
	- BERRY R. S., RICE S. A., ROSS J. (2000). Physical Chemistry. 2 ^a ed Oxford University Press, New York
	- J. BERTRAN-RUSCA, J. NUÑEZ-DELGADO Eds , (2002). Química Física, vol. II. Ariel Ciencia
	- S. R. Logan (2000). Fundamentos de Cinética Química. Addison Wesley
	- BOCKRIS, J.O.M., REDDY, A.K.N., GAMBOA-ADELCO, M.E. (2000). Modern Electrochemistry 2A. Fundamentals
	of Electrodics Kluwer Academic/Plenum Press: New York

	Recommendations
	Subjects that it is recommended to have taken before
Química 1/610G01007	
Química 2/610G01008	
Química 3/610G01009	
Química 4/610G01010	
Química Física 1/610G01016	
Química Física 2/610G01017	
Química Física 3/610G01018	
Experimentación en Química Físio	610G01019
	Subjects that are recommended to be taken simultaneously
	Subjects that continue the syllabus
	Other comments
They are necessary the knowledge	of Chemistry and Physical Chemistry materias
-To know draft,synthesize and cor	xtly present a work.
-To dominate the graphic represe	tion, linear regression with basic knowledges of statistics.
-To use at basic level tools of com-	ting, such as Excel, Word, Power Point.
-It recommends to know English o	ntermediate level (reading)

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.