		Teaching	g Guide			
	Identifying	Data			2015/16	
Subject (*)	Bioquímica: Bioquímica I			Code	610G02011	
Study programme	Grao en Bioloxía			,	'	
		Descri	ptors			
Cycle	Period	Yea	ar	Туре	Credits	
Graduate	2nd four-month period	Firs	st	FB	6	
Language	Spanish		'			
Teaching method	Face-to-face					
Prerequisites						
Department	Bioloxía Celular e Molecular					
Coordinador	Rodriguez Torres, Ana Maria E-mail ana.rodriguez.torres@udc.es		orres@udc.es			
Lecturers	Barreiro Alonso, Aida Inés		E-mail	aida.barreiro@u	udc.es	
	Becerra Fernandez, Manuel			manuel.becerra	@udc.es	
	De Castro De Antonio, María Eugenia			m.decastro@udc.es		
	Rico Díaz, Agustin		agustin.rico.diaz@udc.es			
	Rodriguez Belmonte, Esther			esther.belmonte	e@udc.es	
	Rodriguez Torres, Ana Maria	Rodriguez Torres, Ana Maria ana.rodriguez.to		orres@udc.es		
Web	ciencias.udc.es/bcm					
General description	A Bioquímica I é unha das principais, e máis dinámicas, ramas da Bioloxía, que á súa vez se sitúa como ponte entre esta					
	última e a Química. Como disciplina básica, o estudo da Bioquímica I resulta imprescindible para entender as principais					
	propiedades, químicas e estruturais, das macromoléculas biolóxicas e a relación existente entre estas propiedades e as					
	diversas funcións que desempeñan. Constitúe o punto de partida para o estudo posterior doutras materias relacionadas.					

	Study programme competences / results		
Code	Study programme competences / results		
A8	Illar, analizar e identificar biomoléculas.		
A30	Manexar adecuadamente instrumentación científica.		
A31	Desenvolverse con seguridade nun laboratorio.		
B1	B1 Aprender a aprender.		
B2	Resolver problemas de forma efectiva.		
В3	Aplicar un pensamento crítico, lóxico e creativo.		
B4	B4 Traballar de forma autónoma con iniciativa.		
B5	B5 Traballar en colaboración.		
В6	B6 Organizar e planificar o traballo.		
B7	B7 Comunicarse de maneira efectiva nunha contorna de traballo.		
B8	Sintetizar a información.		

Learning outcomes			
Learning outcomes	Study programme		
	competences /		
		results	
Develop their ability to formulate and solve biochemical basic problems, relating the chemical and structural properties of	A8	B2	
biological molecules with their functionality.		В3	
Know the main bibliographical sources in the field of biochemistry, that allows the student to find, select and understand		B1	
information.		В8	
Know the main characteristics of living matter from a molecular point of view: the main properties, chemical and structural of	A8	B1	
the biological macromolecules and the relationship between their properties and their functions. Also know the basic principles		B2	
of bioenergetics and enzymology.		В3	
		В8	

Know the main techniques for the isolation, purification and characterization of the biomolecules.	A8	B2	
	A30	B4	
	A31	B5	
		В6	
		В7	

	Contents
Topic	Sub-topic
SECTION 1. INTRODUCTION TO BIOCHEMISTRY	1. Biochemistry, origins and evolution until the present
	2. Biomolecules and Bioelements:Concept. Origins and Evolution of Biomolecules
	3. Review of functional groups, chemical bonds and stereochemistry
	4. Biomolecules in its aqueous environment
SECTIION 2. BIOCHEMISTRY METHODOLOGY	General aspects of biochemistry methodology
	2. Biological material used in biochemistry
	3. Techniques tissue homogenate. Fractionation of cellular organelles
	4. Fractional precipitation and centrifugation
	5. Chromatographic techniques
	6. Electrophoretic techniques
	7. Dialysis and ultrafiltration
	8. Radioactivity and isotopic techniques in biochemistry
	9. Spectroscopic techniques
SECTION 3. CARBOHYDRATES	Monosaccharides
	1. Concept, classification and biological importance of carbohydrates
	2. Configuration, conformation and cyclic structure of monosaccharides
	3. Physical and chemical properties
	4. Most important derivatives: structure and function
	Oligosaccharides and polysaccharides
	1. Properties of the O-glycosidic bond
	2. Nomenclature, classification, structure, properties and biological significance of
	most important oligosaccharides
	3. Analysis and identification techniques
	4. Polysaccharides: concept and classification
	5. Most important glucans: structure and biological function

SECTION 4. LIPIDS

Fatty acids, glycerides and glycerides

- 1. Concepts, classification and biological importance
- 2. Fatty Acids. General characteristics. Classification and nomenclature. Physical and chemical properties
- 3. Isolation and identification techniques
- 4. Fatty acid derivatives: Prostaglandins, thromboxanes and leukotrienes
- 5. Waxes. Definition, structure and biological function
- 6. Glycerides. Definition, structure and nomenclature. Properties and structural analysis

Phosphoglycerides and sphingolipids. Terpenes and steroids

- 1. Phosphoglycerides. Structure and classification. Properties and biological function
- 2. Sphingolipids: Phosphosphingolipids and glycosphingolipids. Structural analysis. Phospholipids and biological membranes
- 3. Terpenes. Structure, classification and nomenclature. Biological functions
- 4. Steroids. Structure, classification and nomenclature. Sterols, bile salts and steroid hormones: biological functions

Pyrrolic lipids

- 1. The pyrrole ring
- 2. Pirrolinic compounds: linear and cyclic pyrroles
- 3. Pyrrole compounds as members of conjugated proteins
- 4. Porphyrias and other pathologies

SECTION 5. AMINOACIDS, PEPTIDES AND PROTEINS

Amino acids: properties and purification

- Structure, stereochemistry and classification of amino acid building blocks of proteins
- 2. Other amino acids
- 3. Physical and chemical properties of amino acids
- 4. Chemical reactivity of the amino acids
- 5. Purification and identification of amino acids

Primary structure of peptides and proteins

- 1. The peptide bond and its features. The amide bond. Physical and chemical properties of the peptides.
- 2. Nomenclature of peptides. Peptides of biological interest
- 3. Proteins: general characteristics. Concept. Classification criteria. Physical and chemical general properties
- 4. Structure levels of proteins
- 5. Primary structure of proteins. Concept of primary structure. Types of proteins according to their primary sequence

Secondary structure of proteins

- 1. Linus Pauling and Robert Corey. Concept of secondary structure
- 2. Alpha helix, beta sheets, and beta turns. Regions without secondary structure: Structural Features.
- 3. Prediction of secondary structures: Statistical methods
- 4. Stabilization of secondary structures

Spatial conformation of proteins

- 1. Concept of tertiary structure, supersecondary structure and domain
- 2. Stability of the three dimensional structure of proteins
- Fibrous and globular proteins: characteristics and content in secondary and supersecondary structures and domains
- 4. Characteristics of protein folding
- 5. Quaternary structure of proteins

Protein properties. Extraction, purification and characterization

- 1. Physical properties. Denaturation and renaturation concepts: causes and effects. Protein absorbance at 280 nm
- 2. Chemical properties. Amphoteric character of proteins. Reactivity of the side chains of amino acids
- 3. Methods for determining protein concentrations
- 4. Methods of extraction, separation, purification and concentration of proteins
- 5. Methods for protein characterization: molecular weight, pl and number of monomers

Structural analysis of the proteins

- 1. Analysis of the primary structure. Analysis of amino acid composition and identification of the amino terminal residue
- 2. Automated sequencing of a short polypeptide: Edman degradation
- 3. Sequencing and automated protein synthesis
- 4. Localization of modified amino acid by mass spectrometry
- 5. Analysis of the secondary structures: circular dichroism
- 6. Analysis of the tertiary structure: X-ray diffraction and nuclear magnetic resonance

Conjugated proteins

- 1. Concept and types
- 2. Collagen
- 3. Hemeproteins: Types and structural and functional characteristics
- 4. Myoglobin and hemoglobin

Motor proteins and antibodies

- 1. Actin and myosin. General and structural characteristics
- 2. The Muscle contraction
- 3. General structure of immunoglobulins

SECTION 6. PRINCIPLES OF BIOENERGETICS	1. Review of the thermodynamics principles applied to biological systems
	2. Concept of coupled reaction and ATP cycle
	3. Energy carrier molecules
	4. Electron transporter molecules
	5. Acetyl groups transporter molecules
SECTION 7. ENZYMOLOGY	Enzymes as biological catalysts
	General characteristics and biological function
	2. Advantages of enzymes over chemical catalysts
	3. Classification of enzymes
	4. Reactions catalyzed by different classes of enzymes
	5. Cofactors, coenzymes and role of vitamins
	6. Principal reactions where the coenzymes are involved
	Action mechanisms of the enzymes
	1. Role of enzymes in biological reactions and metabolism
	2. Speed of reactions and activation energy
	3. Enzymes from the structural viewpoint. The active site: three dimensional structure
	and substrate recognition capability. Side chains of amino acids and catalysis
	4. Models that explain the activation energy decrease in the enzymatic reaction
	5. Review of heterolithic and homolithic reactions. Nucleophilic and electrophilic
	reagents
	6. Other molecules as biological catalysts: Antibodies as catalysts (abzymes),
	ribozymes, DNAzymes and Sinzymes
	7. Enzymes used in clinical analysis, in the diagnostic of diseases, or as therapeutic
	agents

SECTION 8. NUCLEOTIDES AND NUCLEIC ACIDS

Nucleotides

- 1. Nucleotides: definition, composition and general structure
- 2. Physical and chemical properties of bases
- 3. Important functional groups of the bases
- 4. Nucleotides as structural components of nucleic acids: phosphodiester bond
- 5. Nucleotides with other biological functions
- 6. Natural modifications and mutation of the bases

Deoxyribonucleic and ribonucleic acids

- 1. Definition and general characteristics of nucleic acids
- 2. Compositional and structural differences between DNA and RNA
- Deoxyribonucleic acids: The DNA double helix and the tertiary structures of DNA.Structural characteristics of the different types of genomes
- 4. DNA sequencing techniques: The Sanger method
- 5. Ribonucleic Acids: François Jacob and Jacques Monod: theory of the information transport from DNA to protein. Types of RNA: function and structure

Properties and characterization of DNA and RNA

- 1. Denaturing agents: related to the temperature and pH
- 2. Loss of secondary and tertiary structure of nucleic acids: consequences
- 3. The Tm (melting temperature) and its relation to the length and nucleotide composition of the nucleic acids
- 4. Kinetics and monitorization of the denaturation-renaturation process: the hyperchromic effect of the denaturation
- Hybridization concept: formation of pure and hybrid duplexes. Techniques:Southern and Northern blot

	Planning	g		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Guest lecture / keynote speech	B1 B3 B4 B6 B8	28	70	98
Laboratory practice	A8 A30 A31 B2 B5 B7	15	3.75	18.75
Problem solving	B1 B2 B4 B7	8	6	14
Workbook	B1 B6 B8	0.25	1	1.25
Objective test	A8 B2 B3 B7 B8	2	10	12
Personalized attention		6	0	6

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies		
Methodologies	Description	
Guest lecture /	The topics of the course will be taught by teachers and all presentations or other documentation will be made available to	
keynote speech	students on the Moodle platform.	
Laboratory practice A serie of activities will be conducted in the practical laboratory, so the students will learn how to handle basic so		
	instrumental in Biochemistry and Molecular Biology.	
Problem solving	In Moodle, the students will have a serie of questionnaires, tests practical problems to be solve individually as part of the	
	continuous evaluation. Previously some of them will be solved in the seminar classes that will help the students to understand	
	them.	
Workbook	In each subject and/or thematic block the students will be recommended with a series of basic bibliographic readings, which	
	they must consult previously of the Master Class, in order to encourage an active participation of the student.	

Objective test	Written test used for the assessment of learning, whose distinctive trait is the ability to determine whether the answers are
	correct or not. It is a measuring instrument rigorously developed, designed to measure knowledge, skills, abilities,
	performance, skills, attitudes, intelligence, etc. It applies to both the diagnostic, formative and summative assessment.
	The objective test can combine different types of questions: multiple choice questions, ordering, short answer, discrimination,
	complete and/or association. It can also contain a single type of any of these questions.

Personalized attention		
Methodologies	Description	
Problem solving	The student would be orientated to resolve the problems and the practical cases.	
Laboratory practice		
	The schedule for the Tutoring hours would be specificated at the begining of the course. The students can also solicitated a	
	previous appointment to answer any question by e-mail.	

	Assessment			
Methodologies	Methodologies Competencies / Description		Qualification	
	Results			
Objective test	A8 B2 B3 B7 B8	This objective test will consist of two parts, depending on the characteristics of the	80	
		various topics, as well as group dynamics.		
		- Theoretical knowledge (test, definitions, related issues)		
		- Problems (resolution of practical cases)		
		In both the two parts will be necessary to reach 50% of the mark to pass the objective test.		
Laboratory practice	A8 A30 A31 B2 B5 B7	The practical classes at the laboratory will be considered as an MANDATORY	20	
		assistance for passing the subject.		
		The evaluation will consist of an objective test which will be included: specific practical		
		cases related to the tests with Biomolecules, the use of different techniques and		
		methods to quantify and identify these, as well as the management of the equipment		
		used during the various practices.		
		They will be evaluated also the ability to graph data, interpretation of results, also their		
		discussion, which will be the necessary condition to use a correct scientific language.		

Assessment comments

1st OPTION QUALIFICATION (JUNE)

- A.-To pass the subject will be necessary to achieve the 50% of the points in each of the evaluable activities: Theory, Problems and Practices.
- B.- HONOURS VALUE: It will be given to the students at the first option (official exam in June).

2nd OPTION QUALIFICATION (JULY)

- A.- To pass the subject will be necessary to achieve the 50% of the points in each of the evaluable activities: Theory, Problems and Practices.
- B.- Those students who not be carried out all the practical classes (without justification), they have a SUSPENSE in the global rating.
- .-In the Final Qualification (either of 2 options: June or July), if the sum of the notes is greater than 5 but one part is suspended, it will appear 4.9 points in the Acts.
- .-In the 2 Options (June and July) a NP: Not Presented, will be aplicable when the student DON?T DO any of the exams of the evaluables activities.

	Sources of information
Basic	- Feduchi, E., Blasco, I., Romero, C.S. y Yáñez, E. (2010). Bioquímica. Conceptos esenciales. 1ª ed Editorial
	Médica Panamericana
	- Albert L. Lehninger, David L. Nelson, Michael M. Cox. (2001). Lehninger Principios de Bioquímica. 3ª ed Ed.
	Omega
	- Stryer, L., Berg, J.M. y Tymoczko, J.L. (2013). Bioquímica, 7ª ed Ed. Reverté
	- Mathews CK, Van Holde KE, Appling DR y Anthony-Cahill SJ (2013). Bioquímica, 4ª ed Ed. Pearson
Complementary	- Schmid, G.H. (1988). Química Biológica. Las bases químicas de la vida Ed. Interamericana/McGraw-Hill
	- Segel, I.H. (1982). Cálculos de Bioquímica. 2ª ed Ed. Acribia.
	- Smith, C. A. y Wood, E. J. (1997). Moléculas biológicas Ed. Addison-Wesley Iberoamericana.
	- Voet, D. y Voet, J.G. (1992). Bioquímica Ed. Omega
	Recursos web: Biomodel: Modelos moleculares en movimiento e interactivos que, junto con texto explicativo, ilustran
	la estructura tridimensional de las biomoléculas. Autor: Ángel Herráez Sánchez Estructura de macromoléculas:
	Modelo interactivo para profundizar en las estructuras macromoleculares: desde un enlace peptídico hasta una
	membrana biológica. Autor: Jesús M. SanzAula Virtual de Biomoléculas: Herramientas para conocer mejor las
	biomoléculas. Autor: José Luis Urdiales Ruiz Cibertexto de Biomoléculas: Un curso completo de la estructura de las
	biomoléculas (glúcidos, lípidos, proteínas y ácidos nucleicos) con la posibilidad de autoevaluarse. Autor: Juan Manuel
	González MañasMATERIALES MULTIMEDIA Y BIOMOLÉCULAS: Material docente para el primer, segundo y tercer
	ciclo Autores: Pilar Roca, Jordi Oliver y Sergio Rodríguez Enlaces: Colección de enlaces sobre Bioquímica y Biología
	Molecular en español y otros idiomas en el mundo. Recopilador: Ángel Herráez Sánchez Outros materiais de apoio:
	Materiales disponibles en la página web de la asignatura. CD-Rom: BioROM 2011 Ayudas al aprendizaje de la
	Bioquímica, Biotecnología y Biología Molecular

Subjects that it is recommended to have taken before	

Química/610G02001	
Matemáticas/610G02003	
Citoloxía/610G02007	
	Subjects that are recommended to be taken simultaneously
Física/610G02002	
Estatística/610G02005	
Histoloxía/610G02008	
	Subjects that continue the syllabus
Bioquímica: Bioquímica II/610G0	012
Bioquímica e Bioloxía Molecular/	10G02013
Fundamentos bioquímicos de bio	ecnoloxía/610G02014
	Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.