

		Teaching	Guide			
	Identifying	Data			2015/16	
Subject (*)	Bioquímica: Bioquímica II			Code	610G02012	
Study programme	Grao en Bioloxía				I	
		Descrip	tors			
Cycle	Period	Yea	r	Туре	Credits	
Graduate	1st four-month period	Secor	nd	FB	6	
Language	Spanish					
Teaching method	Face-to-face					
Prerequisites						
Department	Bioloxía Celular e Molecular					
Coordinador	Freire Picos, María ÁngelesCerdan Villanueva,		E-mail maria.freirep@uc		dc.esesper.cerdan@udc.es	
	Maria Esperanza					
Lecturers	Barreiro Alonso, Aida Inés		E-mail	aida.barreiro@udc.es		
	Cerdan Villanueva, Maria Esperanz	a		esper.cerdan@	udc.es	
	Freire Picos, María Ángeles		maria.freirep@	udc.es		
	Gonzalez Siso, Maria Isabel			isabel.gsiso@udc.es		
	Lamas Maceiras, Mónica			monica.lamas@	udc.es	
	Rico Díaz, Agustin			agustin.rico.dia	z@udc.es	
	Varela Eirín, Marta			marta.varelae@	udc.es	
Web	ciencias.udc.es/bcm					
General description	The subject contents provide to the student the basic information for knowing and understanding the biochemical					
	reactions, enzyme catalysis and metabolism. Studying in the second year of Biology degree will allow the student to achiev					
	the basic knowledge to understand the molecular mechanisms governing many responses in the live organisms.					

	Study programme competences / results
Code	Study programme competences / results
A8	Illar, analizar e identificar biomoléculas.
A10	Avaliar actividades metabólicas.
A26	Deseñar experimentos, obter información e interpretar os resultados.
A29	Impartir coñecementos de Bioloxía.
A30	Manexar adecuadamente instrumentación científica.
A31	Desenvolverse con seguridade nun laboratorio.
B1	Aprender a aprender.
B2	Resolver problemas de forma efectiva.
B3	Aplicar un pensamento crítico, lóxico e creativo.
B4	Traballar de forma autónoma con iniciativa.
B5	Traballar en colaboración.
B7	Comunicarse de maneira efectiva nunha contorna de traballo.
B10	Exercer a crítica científica.
B11	Debater en público.
B13	Comportarse con ética e responsabilidade social como cidadán e como profesional.

Learning outcomes	
Learning outcomes	Study programme
	competences /
	results

Understand and describe the mechanisms by which the Enzymes act in biological catalysis. To design, combining and using	A8	B1	
the methodology of the practical course and theoretical classes, systems to purify and analyse enzymes. To know the	A10	B2	
importance of the pathways to obtain energy in the biological systems to maintain life. To know the main metabolic pathways	A26	B3	
in the cell and its regulation. Develop the capability to relate the different metabolic pathways.	A29	B4	
	A30	B5	
	A31	B7	
		B10	
		B11	
		B13	

	Contents
Торіс	Sub-topic
1. Biological Enzymes as catalysts.	Structural features that give them advantages over chemical catalysts. Reaction
	mechanisms. Antibodies as catalysts. Ribozymes.
2. Kinetics of chemical reactions.	Monosubstrate reactions and Michaelis-Menten kinetics Transformation of the
	Michaelis- Menten equation. Bisubstrate reaction kinetics. Irreversible inhibitors;
	binding, examples and applications. Reversible Inhibition: types of inhibition. Kinetics
	in the presence of inhibitors.
3. Regulation of enzymatic activity.	Importance of regulation in metabolism. Allosteric enzymes. Covalent modification.
	Isoenzymes. Zymogens or proenzymes.
4. Methodology for determination of enzyme activities.	Direct and indirect assays. Purification of enzymes: specific activity, yield and
	purification factor. Importance and current applications of enzymology.
5. Introduction to Metabolism.	Anabolic and catabolic pathways. Compartmentalization. Need for coordination and
	interaction between the different routes, and variability among species. Levels of
	obtaining energy. Methodology for the study of metabolic pathways. Levels of study.
6. Transport of metabolites across cell membranes.	Types of transport depending on the energy sources. Structural data. Examples with
	specific metabolites
7. Obtaining chemical energy.	Oxidation reduction in energy production. Coenzymes involved. Generation of ATP:
	substrate-level phosphorylation, oxidative phosphorylation and photosynthetic
	phosphorylation and energy production systems. Detailed study of oxidative
	phosphorylation and photosynthetic phosphorylation.
8: Glycolysis and catabolism of hexoses.	Location of the routes. Stages and pathway regulation. Fermentations. Relationship
	with the pentose phosphate pathway.
9: TCA cycle	Location of the route. Conversion of pyruvate to acetyl-CoA. Study of the pyruvate
	dehydrogenase complex and interaction with other routes. Anaplerotic routes,
	importance of mitochondrial shuttles and balances.
10. Gluconeogenesis.	Definition and localization, metabolic need for this route. Gluconeogenesis from:
	pyruvate, lactate, amino acids and triglycerides. Glyoxylate cycle.
11. "Dark Phase" of photosynthesis. Relationship	The Calvin cycle. Photorespiration. Regulation. The C4 pathway of tropical plants. The
with gluconeogenesis.	crassulacean acid metabolism. Sucrose metabolism and starch.
12. Glycogen metabolism.	The reserve polysaccharide glycogen. Biosynthesis and degradation of muscle and
	liver glycogen. Regulation. The role of the liver in the maintenance of blood glucose.
	Congenital anomalies of glycogen metabolism
13. Lipid Metabolism.	Lipid catabolism: lipolysis, beta-oxidation. Biosynthesis of fatty acids, triglycerides,
	membrane lipids and steroids. Regulation of lipid metabolism. Metabolism of ketone
	bodies.

14. Metabolism of amino acids.	Digestion and degradation of intracellular proteins. Nitrogen removal of amino acids:
	transamination, deamination. Urea cycle. Ammonia transport to the liver. Fate of the
	carbon skeleton of amino acids. Amino acid biosynthesis: origin of nitrogen and
	carbon skeleton. regulation
15. Derivatives of amino acids.	Amino acid precursor functions: Amines with biological activity, glutathione,
	porphyrins. Metabolism of purine and pyrimidine nucleotides. regulation
16. Integration of metabolism.	Metabolic profiling of major organs. Key connections between routes:
	glucose-6-phosphate, pyruvate and acetyl CoA. Metabolic adaptations to stress.
	Fasting, exercise.
17. Hormonal regulation of metabolism.	Hormones as chemical messengers. Second messengers. Metabolic targets of
	hormone action. Hormone receptors. Adenylate cyclase system. Phospholipase
	system. Receptor dimerization

	Planning	9		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Guest lecture / keynote speech	A10 B1 B3 B4 B7 B10	24	60	84
	B11 B13			
Problem solving	A10 A29 B1 B2 B3 B4	8	16	24
	B5 B7 B10 B11 B13			
Laboratory practice	A8 A26 A30 A31 B1	15	22.5	37.5
	B2 B3 B4 B5 B7 B10			
	B13			
Mixed objective/subjective test	A8 A10 A26 B2 B3 B7	2	0	2
	B13			
Personalized attention		2.5	0	2.5

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description
Guest lecture /	Oral presentation supplemented with the use of media and the introduction of some questions to the students, in order to
keynote speech	impart knowledge and facilitate learning. The master class is also known as "conference" , " expository
	method " or " maxistral lesson." The latter method is usually reserved for a special kind of lesson taught by a
	teacher in special occasions, containing original preparation involved and based on the use of the word and images as a
	means of transmission of information to the audience.
Problem solving	Technique by which you have to solve a specific problem situation, from the previous theoretical resources, and may have
	more than one possible solution.
Laboratory practice	Methodology that allows students actually learn -as through conducting practical activities, such as demonstrations exercises,
	experiments and research.
Mixed	Exam that integrates objective test, short questions and resolution of cases and issues.
objective/subjective	
test	

	Personalized attention
Methodologies	Description
Mixed	We will be available (and recommend) for personalized tutorials, and review of exams.
objective/subjective	
test	

Assessment

Methodologies	Competencies /	Description	Qualification
	Results		
Problem solving	A10 A29 B1 B2 B3 B4	Student's work in reduced groups and controls.	20
	B5 B7 B10 B11 B13		
Laboratory practice	A8 A26 A30 A31 B1	Participation in the clases and Exam.	15
	B2 B3 B4 B5 B7 B10		
	B13		
Mixed	A8 A10 A26 B2 B3 B7	The knowledgements aquired by the students in both, the master clases and the	65
objective/subjective	B13	problem solving will be evaluated.	
test			

Assessment comments

Attendance at the laboratory practice is mandatory. Practices in January and July are evaluated through a practical examination, which is independent of the joint test. The practices approved in January are saved for Julio. The approved practices score is valid only in January and July. The practices carried out in the immediately preceding year can be validated as approved practices (on request).

You must have passed the 3 parts: Problem solving, Laboratory practice and Mixed test independently to pass the course. In the final qualification (in January) if the sum of the notes is greater than 5 but a part is suspended, the final score will appear 4.9 and you will have to recover the failed part in July. In July you can recover 100% of the score for the course with practice exams (15%) and mixed test (85%).

To obtain a "not evaluated" students could not have participated in more than 10% of evaluable scheduled activities.

	Sources of information
Basic	- Feduchi, Blasco, Romero y Yáñez (2011). Bioquímica, conceptos esenciales. Panamericana
	- Lehninger, Nelson y Cox (2006). Principios de Bioquímica. Omega
	- Stryer, Berg y Tymoczko (2009). Bioquímica 6ª Edn. Reverte
	- Tymoczko, Berg, Stryer (2014). Bioquímica curso básico. Reverté
	Others that will be included in the moodle platform. Others that will be included in the moodle platform.
Complementary	- Melo y Cuamatzi (2004). Bioquímica de los procesos metabólicos. Reverté-UAM Xochimilco

Recommendations
Subjects that it is recommended to have taken before
Química/610G02001
Bioquímica: Bioquímica I/610G02011
Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus
Bioquímica e Bioloxía Molecular/610G02013
Fundamentos bioquímicos de biotecnoloxía/610G02014
Other comments
We inform that to be honored with "matrícula" the best qualifyed students in the first oportunity (January) will have preference.
Drinks or food are not allowed in the classroom. We recommend the assistence to the reduced groups and the personal tutorials to increase the
student's succes.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.