		Teaching Gu	ide		
	Identifying I	Data			2015/16
Subject (*)	Programming I			Code	614G01001
Study programme	Grao en Enxeñaría Informática				
	·	Descriptors	3		
Cycle	Period	Year		Туре	Credits
Graduate	1st four-month period	First		FB	6
Language	SpanishEnglish				
Teaching method	Face-to-face				
Prerequisites					
Department	Tecnoloxías da Información e as Co	municacións			
Coordinador	Boveda alvarez, Maria del Carmen E-mail carmen.boveda@udc.es			@udc.es	
Lecturers	Arcay Varela, Bernardino		E-mail	bernardino.arca	ay@udc.es
	Boveda alvarez, Maria del Carmen			carmen.boveda	@udc.es
	Castro Martinez, Alfonso			alfonso.castro@	@udc.es
	Garcia Martin, Esteban			esteban.garcia	@udc.es
	Munteanu , Cristian Robert			c.munteanu@u	dc.es
	Rabuñal Dopico, Juan Ramon			juan.rabunal@u	udc.es
Web		-			

General description

This is an undergraduate course introduction to programming. The student will learn about the following:

- The importance of the objectives of programming;
- The general aspects of the languages and the programming paradigms;
- The pseudocode and syntax of Pascal ISO10206 language in order to be able to describe algorithms and applications;
- The steps to follow for building an application and its main components;
- The basic data types using Pascal ISO_10206;
- The control structures and the differences between them;
- All aspects related to the implementation of functions and procedures;
- Tracking an algorithm in pseudocode and the source program using Pascal ISO-10206;
- Explaining what is the output of the code and finding the potential errors;
- Solving small algorithms and programs starting from low- to moderate-difficulty problems: given the objectives of the program, to choose and use the best data types and structures, the control structures, to decompose and implement the functions and procedures;
- Using an appropriate programming style with identifiers, comments, good design of procedures and functions.

At the end of the course, students will have the following abilities:

- To understand and master the basics of discrete, logic, algorithmic mathematics and computational complexity, and their application for solving engineering problems;
- Basic knowledge on using and programming computers, operating systems, databases and software with applications in engineering;
- Knowledge of the structure, organization, operation and interconnection of computer systems, foundations of programming and their application for solving engineering problems.
- Knowledge, design and efficient use of the types and structures more suited to solve a data problem.
- Solving problems;
- Teamwork;
- Capacity for analysis and synthesis;
- Ability to organize and plan;
- Information Management Skills;
- How to make decisions;
- Concern for quality of programming and applications;
- Using basic tools of information technology and communications (ICT) necessary for the exercise of their profession and for learning throughout life;
- Evolve to exercise an open, educated, critical, committed, democratic and united citizenship, capable of analyzing reality, diagnose problems, formulate and implement solutions based on knowledge and for the common good;
- Critically assess the knowledge, technology and information available to solve real problems;
- As professionals and citizens, assume the importance of learning throughout life.
- Value the importance of research, innovation and technological development in the social, economic and cultural development of society.

	Study programme competences / results
Code	Study programme competences / results
А3	Capacidade para comprender e dominar os conceptos básicos de matemática discreta, lóxica, algorítmica e complexidade computacional
	e a súa aplicación para a resolución de problemas propios da enxeñaría.
A4	Coñecementos básicos sobre o uso e a programación dos ordenadores, sistemas operativos, bases de datos e programas informáticos
	con aplicación na enxeñaría.
A5	Coñecemento da estrutura, organización, funcionamento e interconexión dos sistemas informáticos, os fundamentos da súa
	programación e a súa aplicación para a resolución de problemas propios da enxeñaría.
A13	Coñecemento, deseño e utilización de forma eficiente dos tipos e estruturas de datos máis adecuados á resolución dun problema.
B1	Capacidade de resolución de problemas
B2	Traballo en equipo

В3	Capacidade de análise e síntese
B4	Capacidade para organizar e planificar
B5	Habilidades de xestión da información
B6	Toma de decisións
B7	Preocupación pola calidade
C3	Utilizar as ferramentas básicas das tecnoloxías da información e as comunicacións (TIC) necesarias para o exercicio da súa profesión e
	para a aprendizaxe ao longo da súa vida.
C4	Desenvolverse para o exercicio dunha cidadanía aberta, culta, crítica, comprometida, democrática e solidaria, capaz de analizar a
	realidade, diagnosticar problemas, formular e implantar solucións baseadas no coñecemento e orientadas ao ben común.
C6	Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.
C7	Asumir como profesional e cidadán a importancia da aprendizaxe ao longo da vida.
C8	Valorar a importancia que ten a investigación, a innovación e o desenvolvemento tecnolóxico no avance socioeconómico e cultural da
	sociedade.

Learning outcomes				
Learning outcomes			Study programme	
	con	npetenc	es/	
		results		
Knowing and understanding the importance of the programming objectives. Knowing the general aspects of programming	A4			
anguages and paradigms. Knowing the pseudocode and syntax of Pascal language (ISO 10206 standard) in order to be able	A5			
to describe algorithms and programs. Knowing the steps to follow for building an application and its main components.				
Knowing the basic data types using Pascal ISO 10206. Knowing the control structures for structured programming and the				
differences between them. Knowing all aspects related to the implementation of functions and procedures.				
Being able to track an algorithm (in pseudocode) or program (Pascal ISO 10206), explaining what it is generating and finding	А3	B1	СЗ	
possible errors. Being able to solve small algorithms and programs. Solving small algorithms and programs starting from low-	A5	B2		
to moderate-difficulty problems: given the objectives of the program, to choose and use the best data types and structures, the	A13	В3		
control structures, to decompose and implement the functions and procedures. Using an appropriate programming style.		B4		
Learning to make good use of identifiers, appropriate comments, the establishment of preconditions and postconditions, and		B5		
he good design of procedure and function interfaces.		B6		
		В7		
ndependent learning, planning activities to develop, capacity for abstraction, decision making, initiative and participation.			С3	
			C4	
			C6	
			C7	
			C8	

Contents		
Topic	Sub-topic	

1 BASIC CONCEPTS

- 1.1 Algorithms
- 1.1.1 Representation of algorithms
- 1.2 Programs (applications)
- 1.2.1 Types of programs
- 1.3 Programming languages
- 1.3.1 A historical overview
- 1.3.2 Classification of languages
- 1.3.3 Most important language instructions
- 1.3.4 Properties of languages
- 1.4 Code compilers
- 1.5 Description of languages
- 1.5.1 Backus? Naur Form notation
- 1.5.2 Conway diagrams
- 1.6 The structure of a program
- 1.7 Elements of a program
- 1.7.1 Predefined symbols
- 1.7.2 Special symbols
- 1.7.3 Identifiers
- 1.7.4 Tags
- 1.7.5 Comments
- 1.7.6 Directives
- 1.7.7 Constants
- 1.7.8 Numbers
- 1.7.9 Strings
- 1.7.10 Variables: declaration and initiation
- 1.8 Output and input
- 1.8.1 Output sentences
- 1.8.2 Input sentences
- 1.9 Data types and operators
- 1.9.1 Data types
- 1.9.1.1 Concept
- 1.9.1.2 Classes types
- 1.9.1.3 Integer type
- 1.9.1.4 Real type
- 1.9.1.5 Char type
- 1.9.1.6 Boolean type
- 1.9.1.7 User-defined type
- 1.9.1.8 Enumerated type
- 1.9.1.9 Subrange type
- 1.9.1.10 Compatibility of data types
- 1.9.2 Operators
- 1.9.2.1 Arithmetic
- 1.9.2.2 Relational

- 1.9.2.3 Logic
- 1.9.2.4 For sets
- 1.9.2.5 For strings
- 1.9.2.6 Operators precedence
- 1.9.2.7 Expressions

2 Control statements	2.1 Sequential flow
	2.2 Alternative syntax
	2.2.1 IF statement
	2.2.2 CASE statement
	2.3 Repetitive statement
	2.3.1 Introduction
	2.3.2 Variables associated with loops
	2.3.3 WHILE loop
	2.3.4 Examples to perform in class
	2.3.5 FOR loop
	2.3.6 REPEAT Loop
	2.3.7 Equivalence between loops
	2.3.8 Examples
	2.3.9 Problems with loops
	2.3.10 Loop design
3 Program structure	3.1 Procedures
	3.1.1 Description
	3.1.2 Types of procedures
	3.1.3 Value and reference parameters
	3.1.4 Protected parameters
	3.1.5 Global and local variables
	3.2 Functions
	3.2.1 Description
	3.2.2 Predefined functions
	3.2.3 User-defined functions
	2.2 Decumina
	3.3 Recursion
	2.2.1 Evamples
	3.3.1 Examples

4 Simple data structures	4.1 Arrays
·	4.1.1 ARRAY data type
	4.1.2 Declaring an Array
	4.1.3 Arrays of more than one dimension
	4.1.4 Operations with Arrays
	4.1.5 Arrays as parameters
	4.1.6 Array-type functions
	4.1.7 Constants array type
	7 21
	4.2 Records
	4.2.1 Record data type
	4.2.2 WITH statement
	4.2.3 Record operations
	4.2.4 Records as parameters
	4.2.5 Record type constants
	4.3 Strings
	4.3.1 Fixed-length strings
	4.3.2 Variable-length strings
	4.4 Sets
	4.4.1 Operations and relationships between sets
	4.4.2 Processing sets
	4.5 Basic Operations on Arrays
	4.6 Input / Output

	Plannin	g		
Methodologies / tests	Competencies / Teaching ho		Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Guest lecture / keynote speech	A3 A4 A5 A13 B5 B7	30	30	60
	C3 C4 C6 C7			
Seminar	C8	8	10	18
Laboratory practice	A4 A5 A13 B1 B2 B3	20	50	70
	B4 B6 B7			
Personalized attention		2	0	2

	Methodologies	
Methodologies	Description	
Guest lecture /	In the theory sessions, the teacher describes the objectives and contents of the course as a personal point of view on	
keynote speech	programming.	
	The teacher will present the available programming methods and tools. In the case of special issues, the students should	
	deepen their self-learning.	
	The goal is that students learn to create algorithms for real problems, to use the basic data structures and to apply	
	programming techniques for simple problems. The course programming language is represented by Extended Pascal, ISO	
	10206 standard.	
	The course slides will be available on UDC Moodle before each course lecture.	
Seminar	-	

Laboratory practice	In the practice sessions, students will write program pseudocodes and they will encode them with Extended Pascal ISO 10206
	Standard, they will compile, run and check the codes.
	The goal of the teacher is to supervise the code generated by the student, to resolve doubts, to correct bad programming
	styles and logical errors (Pascal errors will be detected by the compiler).
	The problems will be available on the UDC Moodle before each laboratory class.
	The Moodle forum will be used to respond to any related question about any aspect of the course. This way, all the students
	are able to have the same information in the same time.

Personalized attention		
Methodologies	Description	
Guest lecture /	In both the lectures and the labs sessions, there is a personalized attention of the student, based on the type of class,	
keynote speech	detecting the level of assimilation and understanding of the issues and explaining the practices required to implement.	
Laboratory practice		
Seminar		

		Assessment	
Methodologies	Competencies /	Description	Qualification
	Results		
Guest lecture /	A3 A4 A5 A13 B5 B7	Course grade = continuous assessment grade + final exam grade	70
keynote speech	C3 C4 C6 C7		
		Continuous assessment grade is divided into two parts:	
		First test in the middle of the course (2 points): pseudocode and code programming	
		with each code line explained for one random exercise.	
		2. Second test in the last week of the course (3 points): code programming only for two random exercises.	
		The final exam will consist of three exercises where the student must develop code (5 points).	
		The July extraordinary exam will consist of three problems to develop code (5 points). This grade will be added to that one obtained in the continuous evaluation.	
		The evaluation in December consists into a single test with three problems (10 points).	
Laboratory practice	A4 A5 A13 B1 B2 B3	All the tests will be held on computer (programming code, writing pseudocodes, short	30
	B4 B6 B7	questions). There is no Pascal code programming on paper.	
		The students will randomly choose the exam tasks. Any attempt to cheat during an	
		exam will be punished with grade 0.	
Seminar	C8	-	0

Assessment comments	

La nota final vendrá dada por la nota obtenida por Evaluación Contínua y la obtenida en el examen final

El examen final constará de tres problemas a codificar.

Sources of information		
Basic	- Carmen Bóveda, Esteban García, Alejandra Martínez (2014). Programación estructurada en un lenguaje didáctico y	
	estándar. La Coruña, Reprografia del Noroeste	
	- Leestma, S e Nyhoff, L (1999). Programación en Pascal. Madrid Prentice Hall	
	- Valls, J. e Camacho, D. (2004). Programación estructurado y algoritmos en Pascal. Madrid Prentice Hall	
	- ISO (1990). Extended Pascasl ISO 10206. ISO	
	- Collins, William J. (1984). An Introduction to programming and Pascal. New York: MacMillan	
Complementary	- Grogono, P (). Programación en Pascal. Addison-Wesley I	

Recommendations
Subjects that it is recommended to have taken before
Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus
Other comments

The student must keep in mind that you must perform a very important self-taught work by following the flow: reading, attending, understanding, asking, studying and practicing. Reading: Read the issue to be addressed before attending the theoretical sessions. Even if it seem strange, it is very important. Attending classes: Pay attention in class, do not rest, do not spend time just to take notes. Understanding: Understand the theory sessions and, if not, please ask. Asking: Ask what you do not understand. You have this right. Studying: to retain what you understood. Practicing: Program many applications, which are asked by the professor and others on their own. Programming is a subject that cannot be learned in two days. The student must go maturing concepts, and program many applications. During these classes, the students will be continuous evaluated.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.