		Teachin	g Guide		
	Identifyin	g Data			2015/16
Subject (*)	Métodos Numéricos para a Inform	nática		Code	614G01064
Study programme	Grao en Enxeñaría Informática				
		Descr	iptors		
Cycle	Period	Ye	ar	Туре	Credits
Graduate	1st four-month period	Fou	ırth	Optativa	6
Language	Spanish				
Teaching method	Face-to-face				
Prerequisites					
Department	Matemáticas				
Coordinador	Arregui Alvarez, Iñigo		E-mail	inigo.arregui@	udc.es
Lecturers	Arregui Alvarez, Iñigo	E-mail inigo.arregui@udc.es		udc.es	
Web					
General description					

	Study programme competences
Code	Study programme competences
A1	Capacidade para a resolución dos problemas matemáticos que se poden presentar na enxeñaría. Aptitude para aplicar os coñecementos sobre: álxebra linear; cálculo diferencial e integral; métodos numéricos; algorítmica numérica; estatística e optimización.
В3	Capacidade de análise e síntese

Learning outcomes			
Learning outcomes	Stud	y progra	amme
	СО	mpeten	ces
Knowledge of the most representative models in science and engineering, specially in computing, formulated by mathematical	A1		
models and that need numerical methods			
Knowledge and comprehension of the numerical techniques better adapted for each one of the formulated models	A1	В3	
Implementation of software that develops the numerical techniques, or the use of software tools that develop them	A1	В3	
Abord of problems that arise in the fields of computational science, covering from the understanding of the models to the	A1	В3	
practical and efficient implementation in computer			

	Contents		
Topic	Sub-topic		
Matrix numerical methods and applications	- Numerical resolution of large linear systems. Direct and iterative methods. Sparse		
	matrices. Applications		
	- Least-square problems. Applications		
	- Power method for eigenvalues. Google page rank algorithm		
Numerical methods for computer graphics	- Interpolation and piecewise interpolation		
	- Spline interpolation		
	- Introduction to B-splines and Bezier curves		
	- Applictions in computer graphics		
Numerical resolution of partial differential equations and	- Introduction to partial differential equations		
applications to image processing	- Finite difference methods		
	- Applications in image processing		
Numerical methods implementation	- Some MatLab and Python commands		
	- MatLab partial differential equation toolbox		

Planning

Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
Laboratory practice	A1 B3	14	28	42
Problem solving	A1 B3	7	14	21
Supervised projects	A1 B3	3	12	15
Mixed objective/subjective test	A1 B3	3	0	3
Guest lecture / keynote speech	A1 B3	21	42	63
Personalized attention		6	0	6
/*\The information in the planning table is for s	widenes enly and deep not	taka inta aaaaunt tha	hatara ganaity of the at	Idonto

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description
Laboratory practice	Some applied problems will be posed, different techniques will be discussed and the chosen one will be implemented.
Problem solving	Applied problems will be posed and solved by the teacher in order to understand the different methods and techniques explained in the theoretical courses.
Supervised projects	The student will develop a subject, consulting bibliography and resolving a concrete problem.
Mixed	The student will have to solve some theoretical questions and applied problems.
objective/subjective	
test	
Guest lecture /	In the session magistral the professor will expose the theoretical and practical contents. The contents will be issued from real
keynote speech	problems, the concepts and methods will be developed and some applied examples and exercises will be presented.

	Personalized attention
Methodologies	Description
Supervised projects	- The teacher will supervise and discuss with the students their progress in their respective tasks.
Laboratory practice	- The teacher will expose the goals of the supervised project, and will discuss and overview the progress and the final results
Problem solving	- The teacher will attend the students in all their doubts about the theoretical concepts and practical application.

		Assessment	
Methodologies	Competencies	Description	Qualification
Supervised projects	A1 B3	The student will develop a subject, with the aid of bibliographical references, and wil	10
		solve a proposed problem.	
Laboratory practice	A1 B3	The student will implement the adequate numerical methods in order to solve some	30
		proposed applied problems.	
Mixed	A1 B3	Theoretical-practical control about the contents of the subject.	60
objective/subjective			
test			

Assessment comments	
In the case of classroom activities, facilities will be given to part-time students.	

Sources of information

Basic	- R.L. Burden, J.D. Faires (2011). Análisis Numérico. Cengage Learning
	- D. Kincaid, W. Cheney (1994). Análisis numérico: las matemáticas del cálculo científico. Addison Wesley
	- J.H. Mathews, K.D. Fink. (2000). Métodos numéricos con MATLAB. Prentice-Hall
	- J. Kiusalaas (2005). Numerical Methods in Engineering with Python. Cambridge U.P.
	- (1996). Matlab, the language of scientific computing. Mathworks
	- (1996). Matlab, Partial differential equations toolbox. Mathworks
Complementary	

Recommendations
Subjects that it is recommended to have taken before
Programming I/614G01001
Calculus/614G01003
Programming II/614G01006
Algebra/614G01010
Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus
Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.