		Teaching Guide			
Identifying Data			2015/16		
Subject (*)	Materiais estruturados. Nanomat	eriais	Code	730495010	
Study programme	Mestrado Universitario en Materi	ais Complexos: Análise Térmic	a e Reoloxía (plan 2012))	
		Descriptors			
Cycle	Period	Year	Туре	Credits	
Official Master's Degre	ee 1st four-month period	First	Obligatoria	3	
Language	English				
Teaching method	Face-to-face				
Prerequisites					
Department					
Coordinador	E-mail				
Lecturers	E-mail				
Web					
General description	Este curso introduce estrategias	recientes para la estructuració	n de materiales duros (na	anopartículas, nanocomposites y	
	monolitos jerárquicamente porosos) mediante fluidos				
	complejos. Los fluidos complejos	que consideramos son tipican	nente: disoluciones de m	oléculas grandes (por ej.	
	Polímeros) o estructuras supramoleculares (p. ej. Micelas) en				
	líquidos ordinarios, espumas o emulsiones. El objetivo de esta asignatura es ilustrar como los conceptos físicos de los				
	fluidos complejos se pueden aplicar al diseño racional de				
	materiales avanzados. Para cada sistema, se pondrá el énfasis en: relaciones estructura/propiedades de los materiales				
	sólidos finales; la estructura y estabilidad de los fluidos				
	complejos. Se presentan algunas	s técnicas de caracterización e	specíficas.		

	Study programme competences / results
Code	Study programme competences / results
A1	Set up and conduct tests using the techniques of thermal analysis and rheology most appropriate in each case, within the scope of
	complex materials
A5	Understanding the relationships between structure and properties of materials
B1	Knowledge and understanding to provide a basis or opportunity for originality in developing and / or applying ideas, often in a research
	context
B2	The students have the skill to apply their knowledge and their ability to solve problems in new or unfamiliar contexts within broader (or
	multidisciplinary) contexts related to their field of study
B4	That the students can communicate their conclusions and the knowledge and last reasons behind that conclusions to specialized and non
	specialized audience in a clear and unambiguous way
B13	Analysis-oriented attitude
B14	Ability to find and manage the information
B17	Analyze and decompose processes
B18	Ability for abstraction, understanding and simplification of complex problems
C2	Have a good command of spoken and writing expression and understanding of a foreign language.
C6	Critically assessing the knowledge, technology and information available to solve the problems they face with.
C7	To assume as a professional and citizen the importance of learning throughout life.
C8	To assess the importance of research, innovation and technological development in the socio-economic and cultural progress of society.

Learning outcomes	
Learning outcomes	Study programme
	competences /
	results

This course introduces recent strategies for structuring hard materials (nanoparticles, nanocomposites and hierarchically	AR1	BR1	CR2
porous monoliths) by complex fluids. Complex fluids that are typically considered: solutions of large molecules (eg polymers.)	AR5	BR2	CR6
Or supramolecular structures (eg micelles) In ordinary liquids, foams or emulsions. The aim of this course is to illustrate how		BR4	CR7
complex physical concepts of fluid can be applied to the rational design of advanced materials. For each system, the emphasis		BR13	CR8
will be on: structure / properties of the final solid materials; the structure and stability of the complex fluids. Some specific		BR14	
characterization techniques presented.		BR17	
		BR18	

	Contents
Topic	Sub-topic
1. Fundamentals of physicochemical Interfaces	
2. Solid hierarchically porous	
3. Nanoparticles	
4. Nanocomposites	
5. Biogels	

	Plannin	g		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Guest lecture / keynote speech	A1 A5 B14	12.5	12.5	25
Laboratory practice	A1 B2 B17 B18 C8	20	4	24
Supervised projects	B1 B4 B13 C2 C6 C7	4	20	24
Personalized attention		2	0	2
(*)The information in the planning table is for	r guidance only and does not	take into account the l	neterogeneity of the stu	dents.

	Methodologies		
Methodologies	Description		
Guest lecture /	Presentation given by the professor, on a schematic basis, focusing on the main topics, covering both theoretical and practical		
keynote speech	issues.		
Laboratory practice	Performance of practical activities such as demonstrations, exercises, experiments, etc		
Supervised projects	Activities whose purpose is that the students enlarge the study of the topics pesented in the program and consolidate their		
	acquired knowledge and capabilities. These activities should also help the students learn and improve their capabilities in		
	literature survey.		

Personalized attention		
Methodologies	Description	
Guest lecture /	lecture / The personalized attention to students, understood as a support in the teaching-learning process, will take place in the hours	
keynote speech	of tutoring of the professor.	
Laboratory practice		
Supervised projects		

		Assessment	
Methodologies	Competencies /	Description	Qualification
	Results		
Guest lecture /	A1 A5 B14	Continuous assessment through monitoring of student work in the classroom,	50
keynote speech		laboratory and / or tutorials.	
Laboratory practice	A1 B2 B17 B18 C8	Continuous assessment through monitoring of student work in the classroom,	20
		laboratory and / or tutorials.	
Supervised projects	B1 B4 B13 C2 C6 C7	Presentation (oral and written) of the supervised work.	30

Assessment comments		
	Sources of information	
Basic		
Complementary		
	Recommendations	
Subjects that it is recommended to have taken before		
Subjects that are recommended to be taken simultaneously		
Subjects that continue the syllabus		
	Other comments	

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.