		Teaching Guide		
	Identifying	Data		2015/16
Subject (*)	TERMODINÁMICA		Code	730G03014
Study programme	Grao en Enxeñaría Mecánica			
	'	Descriptors		
Cycle	Period	Year	Туре	Credits
Graduate	1st four-month period	Second	Obligatoria	6
Language	Spanish			
Teaching method	Face-to-face			
Prerequisites				
Department	Enxeñaría Naval e Oceánica			
Coordinador	Lamas Galdo, Isabel	E-m	ail isabel.lamas.ga	ıldo@udc.es
Lecturers	Calvo Diaz, Jose Ramon	E-m	ail jose.ramon.calv	o@udc.es
	Lamas Galdo, Isabel		isabel.lamas.ga	ıldo@udc.es
Web	www.udc.es			
General description				

Study programme competences / results	
Code	Study programme competences / results

Learning outcomes			
Learning outcomes	Stud	y progra	amme
	cor	mpetend	es/
		results	
Modelar matematicamente sistemas e procesos relacionados a la utilización y generación de la energía	A7	B1	C4
		В3	C6
		B5	
		B7	
		В9	
Aprender a aprender	A7	B1	C4
		В3	C6
		B5	
		B7	
		В9	
Resolver problemas de forma efectiva.	A7	B1	C4
		В3	C6
		B5	
		B7	
		В9	
Capacidad de abstracción, comprensión y simplificación de problemas complejos.	A7	B1	C4
		В3	C6
		B5	
		B7	
		B9	

Contents	
Topic	Sub-topic

1. Introduction to Thermodynamics	Applications of Thermodynamics. Continuum medium. Basic concepts: system,
	surroundings, state, thermodynamical property, equilibrium. Characterization and
	measurement of primitive properties: pressure, volume, temperature. Temperature
	scale. Gas thermometer.
2. Work, energy and the 1st law of Thermodynamics	Review of mechanical concepts of energy. Examples: energy balance. Concept of
(conservation of energy)	work. Electric work. Examples. Cuasi-equilibrium processes and work. Heat iteration.
	Examples of heat and work. Internal energy and total energy. Conservation of energy.
	Heat transfer at constant pressure and volume. Enthalpy. Internal energy and enthalpy
	of ideal gasses and compressible flows. Tables of ideal gasses.
3. Propiedades de una sustancia pura	Ideal gas equation of state and characterization of the state using two independent
	properties. Incompressible flows. Phase diagrams and phases of a pure substance.
	Pure simple compressible substances. Characterization of pure simple compressible
	substances. Equation of state and thermodynamical surfaces. (p, v) and (T, v)
	diagrams of a pure simple compressible substance. Tables of thermodynamic
	properties and reference states for water refrigerants. Examples.
4. Conservation of energy and 1st law of Thermodynamics	Vapor turbines, hydraulic turbines, compressors, nozzles, heat exchangers. Concept
	of control volume (open system). Conservation of mass. Examples. Conservation of
	energy and input/output works. Conservation of mass and energy applied to thermal
	machines. Steady and transient states. Filling and emptying of tanks.
5. 2nd law of Thermodynamics and introduction to	Concept of reversibility. Irreversible processes. Spontaneous processes. Internally
thermodynamic cycles	reversible processes. Thermal reservoir. Power cycles and refrigerators. Efficiency
	and coefficient of performance (COP). 2nd law of Thermodynamics: Kelvin-Plank and
	Clausius statements. Equivalence between both statements. Carnot cycle of an ideal
	gas inside a cylinder-piston system. Efficiency of a reversible power cycle.
	Corollaries of the 2nd law of thermodynamics. Kelvin temperature scale. Clausius
	inequality.
6. Entropy	Analogy between work-pressure and heat-temperature in reversible process. Entropy
	as thermodynamic property. Thermodynamic equations related to entropy. Equations
	for ideal gasses. Tables of properties for pure simple compressible substances. (T, s)
	and (h, s) diagrams. Generation of entropy in irreversible processes. Generation and
	transfer of entropy. Open system. Application to thermal machines. Efficiency in
	thermal machines: compressors, pumps, turbines, nozzles. Applications.

	Plannin	g		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
ICT practicals	A7 B1 B3 B5 B7 B9	30	40	70
	C4 C6			
Guest lecture / keynote speech	A7 B1 B3 B5 B7 B9	40	30	70
	C4 C6			
Long answer / essay questions	A7 B1 B3 B5	9	0	9
Personalized attention		1	0	1
(*)The information in the planning table is for	r guidance only and does not	take into account the l	neterogeneity of the stu	dents.

Methodologies		
Methodologies	Description	
ICT practicals	Students learn the software EES (Engineering Equation Solver). Thermodynamical problems will be solved using EES.	
	There will also be lab work.	

Guest lecture /	Conventional classes.
keynote speech	
Long answer / essay	Two exams
questions	

	Personalized attention		
Methodologies	Description		
ICT practicals	Personal attention will be provided to the students.		

	Assessment		
Methodologies	Competencies /	Description	Qualification
	Results		
ICT practicals	A7 B1 B3 B5 B7 B9	Students may deliver some exercises and lab work	15
	C4 C6		
Long answer / essay	A7 B1 B3 B5	Exam/s. In order to pass it is neccesary to obtain at least 3.5 at the final exam and 5	85
questions		final score.	
Others			

Assessment comments	

	Sources of information
Basic	- J. Mª Sáiz Jabardo (2008). Introducción a la Termodinámica.
	- M. Moran y H. N Shapiro (2004). Fundamentals of Engineering Thermodynamics. John Willey & Dons
	- Y. A. Çengel y M. A. Boles. (2006). Thermodynamics. McGraw-Hill
Complementary	

	Recommendations
	Subjects that it is recommended to have taken before
CALCULUS/730G01101	

PHYSICS I/730G01102

DIFFERENTIAL EQUATIONS/730G01110

MECHANICS/730G01118

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

FLUID MECHANICS/730G01119

CALOR E FRIO INDUSTRIAL/REFRIG/730G03020

MÁQUINAS TERMICAS E HIDRAULICAS/730G03023

Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.