

		Teaching	g Guide			
Identifying Data					2015/16	
Subject (*)	Mathematics 1			Code	730G05001	
Study programme	Grao en Enxeñaría Naval e Oce	ánica				
		Descri	iptors			
Cycle	Period	Ye	ar	Туре	Credits	
Graduate	1st four-month period	Fir	st	FB	6	
Language	SpanishGalician				·	
Teaching method	Face-to-face					
Prerequisites						
Department	Matemáticas					
Coordinador	Torres Miño, Araceli E-mail araceli.torres@udc.es					
Lecturers	Cao Rial, María Teresa E-mail teresa.cao@udc.es			.es		
	Torres Miño, Araceli araceli.torres@udc.es			dc.es		
Web	campusvirtual.udc.es/moodle					
General description	This introductory calculus course	e covers differen	tiation and integ	ration of functions of one	and several variables. Topics	
	include: the study of functions of one and several variables, their continuity and differenciability; Taylor polynomials and its					
	application in optimization, finding local extrema and constrained optimization; the integration of functions in one variable,					
	both by using Riemann sums and numerical integration and also using Barrow's rule, together with its applications to					
	computing arc lengths, volumes of revolution and surface areas of revolution; and finally the integration of functions of					
	several variables, together with its application to computing volume and mass of a solid body and its center of mass.					

	Study programme competences / results
Code	Study programme competences / results
A1	Skill for the resolution of the mathematical problems that can be formulated in the engineering. Aptitude for applying the knowledge on:
	linear algebra; geometry; differential geometry; differential and integral calculation; differential equations and in partial derivatives;
	numerical methods; algorithmic numerical; statistics and optimization
B1	That the students proved to have and to understand knowledge in an area of study what part of the base of the secondary education, and
	itself tends to find to a level that, although it leans in advanced text books, it includes also some aspects that knowledge implicates
	proceeding from the vanguard of its field of study
B2	That the students know how to apply its knowledge to its work or vocation in a professional way and possess the competences that tend to
	prove itself by the elaboration and defense of arguments and the resolution of problems in its area of study
B3	That the students have the ability to bring together and to interpret relevant data (normally in its area of study) to emit judgments that
	include a reflection on relevant subjects of social, scientific or ethical kind
B5	That the students developed those skills of learning necessary to start subsequent studies with a high degree of autonomy
B6	Be able to carrying out a critical analysis, evaluation and synthesis of new and complex ideas.
C1	Using the basic tools of the technologies of the information and the communications (TIC) necessary for the exercise of its profession and
	for the learning throughout its life.
C4	Recognizing critically the knowledge, the technology and the available information to solve the problems that they must face.
C5	Assuming the importance of the learning as professional and as citizen throughout the life.

Learning outcomes			
Learning outcomes	Study	y progra	amme
	con	npetenc	es/
		results	
Get familiar with calculus language	A1	B1	C1
		B2	C4
		B3	C5
		B5	
		B6	

To understand the main characteristics of the formulation of a mathematical problem using the tools of the inifinitesimal	A1	B1	C5
calculus.	A5	B2	
		B3	
		B7	
To be able to evaluate the difficuylty of a problem and to choose the most suitable technique among the studied ones to carry	A1	B2	C4
on its solution. Have a good predisposition for problem solving	A5	B3	
		B5	
		B7	
To be able to use the bibliography and the available IT tools to find the necessary information for solving a given problem		B3	C1
			C4
			C5
To know the underlying geometrical meaning of the studied mathematical formalism. To be able to represent sets in the plane	A1		
and in the three dimensional space using different coordinates systems	A5		
To obtain a basic knowledge of functions of several variables: level sets, limits, continuity	A1		
	A5		
To understand the importance of partial derivatives and their relation to instantaneous variation of a magnitude (phisical,	A1		
chemical, economical) and to asses their utility for the correct mathematical formulation of problems in engineering			
To understand the meaning of integrals and their usage for the formulation of several problems in engineering. To know how	A1		
to apply integral for the computation of areas of plane figures, areas of a surface of revolution and solid volumes.			

Contents				
Торіс	Sub-topic			
The space R ⁿ	The vector space R^n.			
	Scalar product: norms and distances.			
	Classification of points and sets.			
	Topology of R ⁿ : bounded set, extrema.			
	Coordinates systems: polar, cylindrical and spherical coordinates.			
Functions of several variables	Scalar and vector functions.			
	Level sets.			
	Continuity.			
	Continuity in compact sets.			
Differenciation of funcions of several variables	Directional derivative.			
	Partial derivatives: properties and practical computing.			
	Differential map of a function.			
	Gradient, relation with partial derivatives.			
	Relation between the differential map and partial derivatives: jacobian matrix.			
	Higher order partial derivatives.			
Applications of the differenciation of functions of several	Taylor polynomial for funcions of one and several variables.			
variables	Critical points.			
	Classification: Hessian matrix.			
	Constrained optimization: dimensionality reduction, Lagrange multipliers method.			
Integration of funcions of one variable	Riemann sums.			
	Integrable functions.			
	Integral Calculus Theorems: Mean Value Theorem, Fundamental Theorem and			
	Barrow's rule.			
	Primitive Calculus.			
	Polinomial interpolation.			
	Numerical integration. Compound Simpson's Rule.			
	Application of integral calculus to computing arc lengths, volumes of revolution and			
	surface areas of revolution.			

Integration of functions of several variables	
	Double integrals.
	Triple integrals.
	Change of variable in double and triple integrals.
	Application of integral calculus to computing volume and mass of a solid body and its
	center of mass.
Appendix: The free software program, MAXIMA	Practical sessions with the free software program MAXIMA

	Plannin	g		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Guest lecture / keynote speech	A1 A1 B3 B5 B3 B5	30	45	75
	B7 C4 C5 C4 C5			
Problem solving	A1 A5 A1 B1 B2 B3	20	25	45
	B5 B6 B1 B2 B3 B5			
	C4 C5 C4 C5			
Objective test	A1 A1 B1 B2 B3 B5	6	0	6
	B6 B1 B2 B3 B5 B7			
	C1 C4 C5 C1 C4 C5			
Workshop	A1 A5 B1 B2 B3 C1	10	10	20
	C4			
Personalized attention		4	0	4

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description
Guest lecture /	The course will be developed during the regular classes where the professor will explain the main concepts and results of the
keynote speech	subject.
Problem solving	This classes are organiized in such a way that we practice how to solve the proposed problems.
Objective test	Three exams will be carried out during the course. The first one will be a partial exam where only some of the chapters will be
	considered. A final exam will be done at the end of the semester. Furthermore a computer exam will be carried out.
Workshop	Problems are solved assisted by the computer programm Maxima.

Personalized attention				
Methodologies	Description			
Workshop	The contents of the subject as well as the homework require that student work by themselves. This will generate some			
Problem solving	questions that they can ask during the classes or during the office hours.			

		Assessment	
Methodologies	Competencies /	Description	Qualification
	Results		

Objective test	A1 A1 B1 B2 B3 B5	Written exams to assess the knowledge of the subject by the students. The subject	100
	B6 B1 B2 B3 B5 B7	will consists on three parts and the final qualification of the subject will be de addition	
	C1 C4 C5 C1 C4 C5	of the quelification obtained at each of these parts	
		Three exams will be performed	
		1) The first one in the reserved period for the partial exams (about the beginning of	
		November), and will involve all the chapters studied until the celebration of the exam.	
		If the student passes this exam, the qualification is retained until the end of the	
		present course. This part will be recoverable in the final exam (second chance), to be	
		held in July.	
		2) The second (and final) exam will be carried out in the period of final exams. It will	
		envolve the second part of the subject and a second chance to pass the first part.	
		The weight of both exams will be the 90% of the final qualification. In case of passing	
		any of these two parts, either in the partial of november or in the final exam of january,	
		the qualification is retained for the present course untuil the exam of second oportunity	
		of july.	
		3) The third exam will consist of a computer exam with the program MAXIMA, where	
		the students must show their capacity for problem solving using the MAXIMA program.	
		The weight of this third part will be the 10% of the final qualification. This part WILL	
		NOT be recoverable, but the obtanined qualification will be kept until July.	

Assessment comments

Sources of information	
Basic	- Salas, L., Hille, E., Etgen, G. (2003). Calculus. vol I-II. Madrid. Reverté
	- García, A. et al. (2007). Cálculo II. Teoría y Problemas de Análisis Matemático en Varias Variables. Madrid. Clagsa
	- García Castro, F., Gutiérrez Gómez, A. (1990-1992). Cálculo Infinitesimal. I-1,2. Pirámide. Madrid
	- Marsden, J., Tromba, A. (2010). Cálculo vectorial. ADDISON WESLEY
	- Varios (1990). Problemas de Cálculo Infinitesimal. Madrid. R.A.E.C.
	- Tébar Flores, E. (1977). Cálculo Infinitesimal. I-II. Madrid. Tébar Flores
	- Spiegel, M. R. (1991). Cálculo Superior. Madrid. McGraw-Hill
	- Soler, M., Bronte, R., Marchante, L. (1992). Cálculo infinitesimal e integral. Madrid
	- Burgos Román, Juan de (2007). Cálculo infinitesimal de una variable. Madrid. McGraw-Hill
	- Coquillat, F (1997). Cálculo Integral. Madrid. Tebar Flores
	- Larson, R., Hostetler, R., Edwards, B. (2013). Calculus Brooks Cole
	- García, A. et al. (2007). Cálculo I. Teoría y Problemas de Análisis Matemático en Una Variable. Madrid. Clagsa
	- De Diego, B. (1991). Ejercicios de Análisis: Cálculo diferencial e intergral (primer curso de escuelas técnicas
	superiores y facultades de ciencias). Madrid. Deimos
	br>
Complementary	As seguintes páxinas web poden resultar de interese para o estudio da materia: www.intmath.com
	www.ies.co.jp/math/java/ http://demonstrations.wolfram.com/http://dm.udc.es/elearning/ www.intmath.com
	www.ies.co.jp/math/java/ http://193.146.36.49/mat1

Recommendations

Subjects that it is recommended to have taken before

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Mathematics 2/730G05005

Ecuacións diferenciais/730G05011

Estatística/730G05012

Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.