		Teachin	ıg Guide			
	Identifying Data 2016/17					
Subject (*)	Algebra Code			614G01010		
Study programme	Grao en Enxeñaría Informática					
		Desc	riptors			
Cycle	Period	Ye	ear	Туре	Credits	
Graduate	2nd four-month period	Fi	rst	FB	6	
Language	SpanishGalicianEnglish					
Teaching method	Face-to-face					
Prerequisites						
Department	Computación					
Coordinador	Souto Salorio, Maria Jose		E-mail	maria.souto.sal	orio@udc.es	
Lecturers	Aguado Martin, Maria Felicidad		E-mail	felicidad.aguad	do@udc.es	
	Barja Pérez, José María			j.m.barja@udc.	es	
	Costoya Ramos, Maria Cristina			cristina.costoya	a@udc.es	
	Doncel Juarez, Jose Luis			jose.luis.doncel	@udc.es	
	Perez Vega, Gilberto			gilberto.pvega@	@udc.es	
	Souto Salorio, Maria Jose			maria.souto.sal	orio@udc.es	
	Vidal Martin, Concepcion			concepcion.vida	alm@udc.es	
	Vieites Rodriguez, Ana Maria			ana.vieites@ud	lc.es	
Web	campusvirtual.udc.es/moodle					
General description	This course is part of the basic training module in the Computer Engineering degree. It is intended for acquiring skills in				s intended for acquiring skills in	
	formal and abstract thinking, which will be essential in the performance of the students future professions. The main				uture professions. The main	
	purpose of this subject is to introd	duce the basic	notions of modular a	arithmetic, matrix the	ory and linear algebra. Emphasis is	
	given to topics that will be useful	in other subjec	ts: Computer Securi	ty, Computer Graphi	cs, Artificial Vision, Digital Image	
	Processing, and Networks.					
	We are concerned with an algorit	hmic approach	emerging from the	interplay of Algebra a	and Computer Engineering. In this	
	course, students					
	will learn how to design and analy	yze efficient alg	porithms for element	ary number theory ar	nd linear algebra.	

	Study programme competences / results
Code	Study programme competences / results
A1	Capacidade para a resolución dos problemas matemáticos que se poden presentar na enxeñaría. Aptitude para aplicar os coñecementos
	sobre: álxebra linear; cálculo diferencial e integral; métodos numéricos; algorítmica numérica; estatística e optimización.
A3	Capacidade para comprender e dominar os conceptos básicos de matemática discreta, lóxica, algorítmica e complexidade computacional e a súa aplicación para a resolución de problemas propios da enxeñaría.
B3	Capacidade de análise e síntese
B6	Toma de decisións
C1	Expresarse correctamente, tanto de forma oral coma escrita, nas linguas oficiais da comunidade autónoma.
C6	Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.
C7	Asumir como profesional e cidadán a importancia da aprendizaxe ao longo da vida.

Learning outcomes			
Learning outcomes	Study	/ prograr	nme
	con	npetence	s/
		results	
Acquire basic concepts from Elementary Number Theory. A1			
	А3		

Interpret and apply the acquired knowledge from Elementary Number Theory to Cryptography.	A1	В3	
	А3		
Know some basic concepts of Linear Algebra: systems of linear equations, vectorial spaces, matrices and linear maps.	A1		
Use Linear Algebra as a tool for modeling and solving processes related to computer science.	A1	В6	C6
Know the definitions and basic principles from Coding Theory related to Linear Algebra.	A1		
Simulate coding and decoding processes using matricial techniques.	A1	В6	C6
Learn how to use mathematical language in a proper way to express ideas.	A1		C1
Develop the capacities of abstraction, concretion, concision, imagination, intuition, reasoning, criticism, objectivity, synthesis		В3	C7
and accuracy; put all of them in practice either in the academic or the professional life for solving problems successfully.			
Apply basic concepts from the subject and relate to algorithmic and computational concepts in the light of the mathematical	A1		C6
ones.			
Acquire tools and skills for solving problems in a proper way. Express and interprete results in a rigorous way. Check the result	A1	В6	C1
and, in case of any incongruence, revise the process to detect the error.			C7

Contents		
Topic	Sub-topic Sub-topic	
	Basic concepts from elementary number theory. Euclides' algorithm. Prime numbers.	
Chapter 1: Modular arithmetic: application to Cryptography.	Linear diophantine equations. Congruences. Modular arithmetic.	
	Definition of cryptosystem. Classical cryptography. Symmetrical and asymmetrical	
	cryptography. Examples of cryptosystems.	
	Numeration systems. Divisibility criteria.	
Chapter 2: Systems of Linear Equations, Matrices and	Definition and properties of systems of linear equations. Echelon row form of system.	
Determinants.	Gauss method. Matrices. Operations with matrices. Invertible matrix. Determinant of a	
	square matrix, properties. Cramer's rule.	
Chapter 3: Vector Spaces.	Definition and properties of a vector space. Bases and coordinates. Dimension. Rank	
	of a set of vectors and matrix rank. Computation of the rank. Change of basis.	
	Rouché-Frobenius theorem.	
Chapter 4. Linear maps.	Definición e propiedades das aplicacions lineais. Núcleo e imaxe de unha aplicación	
	lineal. Matriz asociada a unha aplicación lineal. Teorema da dimensión.	
	Definition and properties of linear maps. Kernel and image of a linear map. Matrix	
	associated to a linear map. Dimension theorem.	
Chapter 5. Linear Codes	Definition of linear codes. Parameters of a linear code. Hamming distance and	
	Hamming weight. Generator matrix and parity-check matrix of a code. Error correction	
	in linear codes. Binary Hamming codes.	

	Plannir	ng		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Guest lecture / keynote speech	A1 A3 C6 C7	30	37.5	67.5
Laboratory practice	A1 B3 B6 C1 C6	20	30	50
Collaborative learning	A1 B3 C1 C7	10	17.5	27.5
Personalized attention		5	0	5
(*)The information in the planning table is for	guidance only and does no	t take into account the l	neterogeneity of the stu	dents.

Methodologies		
Methodologies	Description	

2/5

Guest lecture /	The chief means of communication for this course will be the platform Moodle. Students are expected to check this for
keynote speech	up-to-date assignments-including material separate from the given at the blackboard-and announcements. Over the semester
	we will study many topics that form a central part of the language of modern science. Weekly problem sets with a mix of
	exercices will be given. These include problems requiring abstraction, understanding and/or synthesis of various concepts. In
	many ways, these constitue the heart of the course; rigor in their completion often yields the greatest understanding.
	We want the student to leave the course not only with computational ability, but with the ability to use these notions in their
	natural scientific contexts, and with an appreciation of their mathematical power.
Laboratory practice	The laboratory work is the focal point of learning. A series of exercises related to the theoretical contents explained in the
	theoretical classes will be given to students at the beginning of every chapter. It ensures that:
	I) students work closely with the teacher helping them to grow in confidence, to develop their skills in analysis, and to
	encourage them to reinforce the learning of theoretical concepts through the resolution of the exercises.
	II) students gain capacity of abstraction and understanding.
	A typical laboratory practice is a 2-hour class, with small groups of students, discussing the resolution of the exercises. It gives
	students the chance to interact directly with teachers, to exchange ideas and argue between them, to ask questions, and of course, to learn through the discussion.
	Technology can play an important role in the learning of mathematics, and as such, graphing and scientific calculators are
	permitted for class and homework, though they will not be permitted on tests and quizzes, and thus it is emphasized that
	students learn not to rely on them. Subject to availability, some exercises may be designed to be solved with computers.
Collaborative learning	Collaboration is encouraged, for home and class assignments; however, all submitted assignments must be written up

	Personalized attention
Methodologies	Description
Guest lecture /	The studens have the possibility to revise the qualification obtained in the written final test, proving that this is adjusted to the
keynote speech	criteria of evaluation established.
Laboratory practice	
Collaborative learning	Likewise, the evaluations of the answers to the questions and exercises formulated during the course, with the indications
	adequate in order to correct the errors and/or improve the answers with a view to a more solid formation, will justify.
	In the sessions in reduced groups, the doubts formulated by the students are solved in an individualized way, especially whe
	they are common to several of them or illustrate an interesting case. If the question is more particular or does completely not
	remain solved for some pupil, it would be treated in the hours of individualized tuition.
	Students registered to partial time: Depending on the particularities of every specific case and the possibilities of the teaching staff put in charge of the group to the that it is a pupil registered in time partial assigned, the tests of the continuous evaluation will be adjusted so that this pupil can obtain the same qualification as a pupil of ordinary registration.

Assessment

Methodologies	Competencies /	Description	Qualification
	Results		
Guest lecture /	A1 A3 C6 C7	At the end of the course a written test will be carried out. This test includes a	80
keynote speech		maximum of 8 questions. Among them, you will find:	
		- Short questions of basic theoretical concepts.	
		- Exercises with a degree of difficulty that is similar to exercises solved during the	
		semester.	
		As well as demonstrating skill in the appropriate techniques, candidates will be	
		expected to apply knowledge in the solution of problems. Candidates will also be	
		expected to write with clarity, taking care of the presentation.	
		With the final test, the student ends the process of continuous evaluation.	
		It is necessary to obtain more than three points of the eight possible ones in the	
		written test, which is weighted at 80% of total.	
Laboratory practice	A1 B3 B6 C1 C6	This section will consist of, at least, 2 structured or problem-solving questions based	20
		on the different topics, similar to exercises from the weekly 2-hour session classes.	
		Correct answers as well as the presentation and clarity of the exposition will be	
		valued. This practice is weighted at 20% of total.	
		A participative attitude of the student in the resolution of the proposed exercises	
		during the sessions will also be positively valued.	
Collaborative learning	A1 B3 C1 C7	An active participation of the students will be positively valued.	0
Others			

Assessment comments

Evaluation

of the student registered in time partial: Depending on the particularities of every specific case and the possibilities of the teaching staff put in charge of the group to the that it is a student registered in time partial assigned, the tests of the continuous evaluation will be adjusted so that this student can obtain the same qualification as a student of ordinary registration. In the opportunity advanced to December, the examination will be qualified on ten points, being necessary to obtain at least one five to approve the matter.

Sources of information

Basic	- Grossman, S. I. (1996). Álgebra lineal con aplicaciones. McGraw-Hill Interamericana México.	
	- Grossman, S. I. (1994). Elementary Linear Algebra with Applications. Wiley	
	- Merino, L. y Santos, E. (2006). Álgebra Lineal con Métodos Elementales. Thomson.	
	- Cameron, P. J. (1998). Introduction to Algebra. Oxford University Press, Oxford.	
	- Rosen, K. H. (2004). Matemática Discreta y sus aplicaciones. McGraw-Hill Interamericana.	
	- Rosen, K. H. (2003). Discrete Mathematics and Its Applications. McGraw-Hill	
	- Biggs, N. L. (1994). Matemática Discreta. Madrid, Vicens Vives.	
	Lay, D. C. (2011). Linear Algebra and Its Applications. Pearson	
	- Lay, D. C. (2007). Algebra Lineal y sus Aplicaciones. Prentice Hall	
Complementary	- Hernández, E. (1994). Álgebra y Geometría. Addison-Wesley.	
	- Rojo, J. y Martín, I. (2005). Ejercicios y problemas de Álgebra Lineal. McGraw-Hill.	
	- Lidl, R. y Pilz, G. (1998). Applied Abstract Algebra. Nueva York, Springer.	
	- Torrecilla Jover, B. (1999). Fermat. El Mago de los Números. Nivola.	
	- Van Lint, J. H. (1999). Introduction to Coding Theory. Berlín, Springer.	
	- Singh, S. (2000). Los Códigos Secretos. Debate	
	- Nakos, G. y Joyner, D. (1999). Álgebra lineal con aplicaciones. Thomson.	
	- Nakos, G. y Joyner, D. (1998). Linear Algebra with Applications. Brooks Cole Publising	
Complementary	 - Hernández, E. (1994). Álgebra y Geometría. Addison-Wesley. - Rojo, J. y Martín, I. (2005). Ejercicios y problemas de Álgebra Lineal. McGraw-Hill. - Lidl, R. y Pilz, G. (1998). Applied Abstract Algebra. Nueva York, Springer. - Torrecilla Jover, B. (1999). Fermat. El Mago de los Números. Nivola. - Van Lint, J. H. (1999). Introduction to Coding Theory. Berlín, Springer. - Singh, S. (2000). Los Códigos Secretos. Debate - Nakos, G. y Joyner, D. (1999). Álgebra lineal con aplicaciones. Thomson. 	

Recommendations
Subjects that it is recommended to have taken before
Discrete Mathematics/614G01004
Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus
Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.