		Teaching	g Guide			
Identifying Data					2016/17	
Subject (*)	Mathematics 1 Code			730G05001		
Study programme	Grao en Enxeñaría Naval e Oceánica					
		Descr	iptors			
Cycle	Period	Ye	ar	Туре	Credits	
Graduate	1st four-month period	Fir	st	FB 6		
Language	SpanishGalician					
Teaching method	Face-to-face					
Prerequisites						
Department	Matemáticas					
Coordinador	Cao Rial, María Teresa E-mail teresa.cao@udc.es					
Lecturers	Cao Rial, María Teresa E-mai		E-mail	teresa.cao@udc	teresa.cao@udc.es	
	Suarez Taboada, Maria			maria.suarez3@	udc.es	
	Torres Miño, Araceli			araceli.torres@u	dc.es	
Web	campusvirtual.udc.es/moodle					
General description	This introductory calculus course covers differentiation and integration of functions of one and several variables. Topics				and several variables. Topics	
	include: the study of functions of one and several variables, their continuity and differenciability; Taylor polynomials and its					
application in optimization, finding local extrema and constrained optimization; the integration of functions in				tion of functions in one variable,		
	both by using Riemann sums and	I numerical inte	gration and also υ	using Barrow's rule, toge	ether with its applications to	
	computing arc lengths, volumes of	of revolution and	d surface areas of	f revolution; and finally the	ne integration of functions of	
	several variables, together with its	s application to	computing volum	e and mass of a solid bo	ody and its center of mass.	

	Study programme competences
Code	Study programme competences
A1	Skill for the resolution of the mathematical problems that can be formulated in the engineering. Aptitude for applying the knowledge on:
	linear algebra; geometry; differential geometry; differential and integral calculation; differential equations and in partial derivatives;
	numerical methods; algorithmic numerical; statistics and optimization
A5	Have a capacity for the space vision and knowledge of the techniques of graphic representation, so much for traditional methods of metric
	geometry and descriptive geometry, as through the applications of design assisted by computer
B1	That the students proved to have and to understand knowledge in an area of study what part of the base of the secondary education, and
	itself tends to find to a level that, although it leans in advanced text books, it includes also some aspects that knowledge implicates
	proceeding from the vanguard of its field of study
B2	That the students know how to apply its knowledge to its work or vocation in a professional way and possess the competences that tend to
	prove itself by the elaboration and defense of arguments and the resolution of problems in its area of study
ВЗ	That the students have the ability to bring together and to interpret relevant data (normally in its area of study) to emit judgments that
	include a reflection on relevant subjects of social, scientific or ethical kind
B5	That the students developed those skills of learning necessary to start subsequent studies with a high degree of autonomy
B6	Be able to carrying out a critical analysis, evaluation and synthesis of new and complex ideas.
C1	Using the basic tools of the technologies of the information and the communications (TIC) necessary for the exercise of its profession and
	for the learning throughout its life.
C4	Recognizing critically the knowledge, the technology and the available information to solve the problems that they must face.
C5	Assuming the importance of the learning as professional and as citizen throughout the life.

Learning outcomes	
Learning outcomes	Study programme
	competences

To think in a logic, critic and creative way.		B1	C4
		B2	C5
		В3	
		B5	
		В6	
Get familiar with calculus language	A1	B1	
		B5	
To understand the main characteristics of the formulation of a mathematical problem using the tools of the inifinitesimal	A1	B2	C4
calculus.	A5	В3	
		B5	
		В6	
To be able to use the bibliography and the available IT tools to find the necessary information for solving a given problem	A1	B5	C1
	A5	В6	C4
			C5
To be able to evaluate the difficuylty of a problem and to choose the most suitable technique among the studied ones to carry		В3	C1
on its solution. Have a good predisposition for problem solving			C4
			C5
To know the underlying geometrical meaning of the studied mathematical formalism. To be able to represent sets in the plane	A1	B1	
and in the three dimensional space using different coordinates systems	A5	B2	
To obtain a basic knowledge of functions of several variables: level sets, limits, continuity	A1	B1	
	A5	B2	
		В3	
Ability of thinking in an abstract way, understanding and simplifying complex problems.	A1	B1	C4
		B2	
		В3	
		B5	
		В6	
To understand the importance of partial derivatives and their relation to instantaneous variation of a magnitude (phisical,	A1	B2	
chemical, economical) and to asses their utility for the correct mathematical formulation of problems in engineering		B5	
		В6	
To understand the meaning of integrals and their usage for the formulation of several problems in engineering. To know how	A1	B2	
to apply integral for the computation of areas of plane figures, areas of a surface of revolution and solid volumes.		B5	
		B6	

	Contents
Topic	Sub-topic
The space R^n	The vector space R^n.
	Scalar product: norms and distances.
	Classification of points and sets.
	Topology of R^n: bounded set, extrema.
	Coordinates systems: polar, cylindrical and spherical coordinates.
Functions of several variables	Scalar and vector functions.
	Level sets.
	Continuity.
	Continuity in compact sets.

Differenciation of funcions of several variables	Directional derivative.
	Partial derivatives: properties and practical computing.
	Differential map of a function.
	Gradient, relation with partial derivatives.
	Relation between the differential map and partial derivatives: jacobian matrix.
	Higher order partial derivatives.
	Introduction to vector calculus.
Applications of the differenciation of functions of several	Taylor polynomial for funcions of one and several variables.
variables	Critical points.
	Classification: Hessian matrix.
	Constrained optimization: dimensionality reduction, Lagrange multipliers method.
	Implicit function and inverse function theorems.
Integration of funcions of one variable	Riemann sums.
	Integrable functions.
	Integral Calculus Theorems: Mean Value Theorem, Fundamental Theorem and
	Barrow's rule.
	Primitive Calculus.
	Polinomial interpolation.
	Numerical integration. Compound Simpson's Rule.
	Application of integral calculus to computing arc lengths, volumes of revolution and
	surface areas of revolution.
Integration of functions of several variables	
	Double integrals.
	Triple integrals.
	Change of variable in double and triple integrals.
	Application of integral calculus to computing volume and mass of a solid body and its
	center of mass.
Complex numbers	The field of complex numbers.
	Operations: sum, produt.
	Module and argument.
	Polar form.
	Operating in polar form.
Appendix: The free software program, MAXIMA	Practical sessions with the free software program MAXIMA

Planning			
Competencies	Ordinary class	Student?s personal	Total hours
	nours	work nours	
A1 A5 B3 B5 B6 C5	30	45	75
C4			
A1 A5 B1 B2 B3 B5	20	25	45
B6 C4 C5			
A5 A1 B1 B2 B3 B5	6	0	6
B6 C1 C4 C5			
A1 B1 B2 B3 C1 C4	10	10	20
	4	0	4
	Competencies A1 A5 B3 B5 B6 C5 C4 A1 A5 B1 B2 B3 B5 B6 C4 C5 A5 A1 B1 B2 B3 B5 B6 C1 C4 C5	hours A1 A5 B3 B5 B6 C5 C4 A1 A5 B1 B2 B3 B5 B6 C4 C5 A5 A1 B1 B2 B3 B5 B6 C1 C4 C5 A1 B1 B2 B3 C1 C4 A1 B1 B2 B3 C1 C4	Competencies Ordinary class hours Student?s personal work hours A1 A5 B3 B5 B6 C5 C4 30 45 A1 A5 B1 B2 B3 B5 B6 C4 C5 20 25 A5 A1 B1 B2 B3 B5 B6 C1 C4 C5 6 0 A1 B1 B2 B3 C1 C4 10 10

	Methodologies
Methodologies	Description

Guest lecture /	The course will be developed during the regular classes where the professor will explain the main concepts and results of the
keynote speech	subject.
Problem solving	This classes are organized in such a way that we practice how to solve the proposed problems.
Objective test	Three exams will be carried out during the course. The first one will be a partial exam where only some of the chapters will be
	considered. A final exam will be done at the end of the semester. Furthermore a computer exam will be carried out.
Workshop	Problems are solved assisted by the computer programm Maxima.

	Personalized attention
Methodologies	Description
Workshop	The contents of the subject as well as the homework require that student work by themselves. This will generate some
Problem solving	questions that they can ask during the classes or during the office hours.

		Assessment	1
Methodologies	Competencies	Description	Qualificatio
Objective test	A5 A1 B1 B2 B3 B5	Written exams to assess the knowledge of the subject by the students. The subject	100
	B6 C1 C4 C5	will consist on four parts and the final qualification of the subject will be de addition of	
		the qualification obtained at each of these parts	
		1) The first one will be performed in the reserved period for the partial exams (about	
		the beginning of November), and will involve all the chapters studied until the	
		celebration of the exam. If the student passes this exam, the qualification is retained	
		until the end of the present course. This part will be recoverable in the final exam	
		(second chance), to be held in July.	
		2) The second (and final) exam will be carried out in the period of final exams. It will	
		involve the second part of the subject and a second chance to pass the first part.	
		The weight of both exams will be the 80% of the final qualification. In case of passing	
		any of these two parts, either in the partial of november or in the final exam of january,	
		the qualification is retained for the present course until the exam of second oportunity	
		of july.	
		3) The third part consists of evaluating the content of the issue "Complex	
		Numbers", either by the work done throughout the semester, or with performing	
		a specific exercise in the final objective test. The weight of this part is 10% of the final grade.	
		4) The third exam will consist on the evaluation the competences using the program	
		MAXIMA, where the students must show their capacity for problem solving using the	
		MAXIMA program. The weight of this third part will be the 10% of the final	
		qualification. This part WILL NOT be recoverable, but the obtanined qualification will be kept until July.	

Assessment comments	

Sources of information

Basic	- Salas, L., Hille, E., Etgen, G. (2003). Calculus. vol I-II. Madrid. Reverté
	- García, A. et al. (2007). Cálculo II. Teoría y Problemas de Análisis Matemático en Varias Variables. Madrid. Clagsa
	- García Castro, F., Gutiérrez Gómez, A. (1990-1992). Cálculo Infinitesimal. I-1,2. Pirámide. Madrid
	- Marsden, J., Tromba, A. (2010). Cálculo vectorial. ADDISON WESLEY
	- Spiegel, M. R. (1991). Cálculo Superior. Madrid. McGraw-Hill
	- Varios (1990). Problemas de Cálculo Infinitesimal. Madrid. R.A.E.C.
	- De Diego, B. (1991). Ejercicios de Análisis: Cálculo diferencial e intergral (primer curso de escuelas técnicas
	superiores y facultades de ciencias). Madrid. Deimos
	- Tébar Flores, E. (1977). Cálculo Infinitesimal. I-II. Madrid. Tébar Flores
	- García, A. et al. (2007). Cálculo I. Teoría y Problemas de Análisis Matemático en Una Variable. Madrid. Clagsa
	- Larson, R., Hostetler, R., Edwards, B. (2013). Calculus Brooks Cole
	- Coquillat, F (1997). Cálculo Integral. Madrid. Tebar Flores
	- Soler, M., Bronte, R., Marchante, L. (1992). Cálculo infinitesimal e integral. Madrid
	- Burgos Román, Juan de (2007). Cálculo infinitesimal de una variable. Madrid. McGraw-Hill
	 <
Complementary	As seguintes páxinas web poden resultar de interese para o estudio da materia: www.intmath.com
	www.ies.co.jp/math/java/ http://demonstrations.wolfram.com/http://dm.udc.es/elearning/ www.intmath.com
	www.ies.co.jp/math/java/ http://193.146.36.49/mat1

Recommendations
Subjects that it is recommended to have taken before
Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus
ÁLXEBRA/730G03006
ESTATÍSTICA/730G03008
ECUACIÓNS DIFERENCIAIS/730G03011
FIABILIDADE ESTATÍSTICA E MÉTODOS NUMÉRICOS/730G03046
Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.