UNIVERSIDADE DA CORUÑA

UNIVERSIDADE DA CORUÑA

Topic	Contents
Path Integral	Paths in Rn. Reparameterizations. Line integrals of scalar functions. Applications of the integrals of scalar functions. Integrals of vector fields. Gradient type functions. Green theorem.
Surface integral	Cross product. Sufaces in R3. Area of a surface. Integral of a scalar function. Oriented surfaces. Integral of vector fileds. Divergence. Gauss Theorem. Curl. Stokes Theorem.
Diagonalization	Matrices: types and examples. Matrix operations. Matrix transpose. Symmetric and antisymmetric matrices. Determinant of a square matrix. Rank. Inverse matrix.
Vector spaces	The vector space Rn. Operations: vector addition, scalar multiplication. Vector subspaces. Direct sum. Linear combination, linear span. Linear independence. Spaning set. Basis and dimension. Theorems about basis. Coordinates, change of
Linear maps	coordinates.

Planning				
Methodologies / tests	Competencies	Ordinary class hours	Student?s personal work hours	Total hours
Guest lecture / keynote speech	B2 B3 B4 C1	21	42	63
Document analysis	B4 B6	0	8	8
Problem solving	A6	20	20	40
Mixed objective/subjective test	A6 B1 B4 C1	6	6	12
Laboratory practice	A6 B6 B4	9	9	18
Personalized attention		9	0	9

$\left(^{*}\right)$ The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies	Methodologies			
Guest lecture / keynote speech	We present the contents of the subject. Examples of applications are developed and related activities are proposed.			
Document analysis	We discuss the different notations in mathematics. The sources of information are commented: books, magazines, webpages.			
Problem solving	With them we move from theory to practice. Specific problems of the subject developed in the lectures are solved.	\quad	Mixed objective/subjective test	They are useful to determine the degree of knowledge that students get at classes and with their personal study. It may consist of an explanation of any content of the course, the answer of test questions, the resolution of theoretical and practical issues and developing solutions to issues involving deep knowledge of the subject.
:---	:---			
Laboratory practice	Its aim is to apply computer programs to solve problems commented in the lectures.			
Methodologies				
Problem solving Guest lecture / keynote speech Laboratory practice	The personal attention allows to adapt the study to the level of knowledge and competence of each student. Individual attention of the students optimizes time spent studying and allows correct misconceptions.			

Assessment			
Methodologies	Competencies	Description	Qualification

UNIVERSIDADE DA CORUÑA

Problem solving	A6	We will formulate practical issues in which students have to seek a solution to a given problem.	
Mixed objective/subjective test	A6 B1 B4 C1	They are tests made for measuring the level of knowledge of the subject by students. They do not have a defined profile, as they can range from test questions in which the student must only choose one answer among the options proposed, or solving problems involving an action strategy or theoretical questions that reflect the degree of knowledge of the subject.	
Laboratory practice	A6 B6 B4	Students should know the functioning of a computer program that helps resolve mechanical problems raised previously.	5

Assessment comments

The final grade of the subject consists of three parts:
i) Problem solving: It's made through written tests and the development of classes in the classroom, where the teacher assesses individually the degree of knowledge of the subject of each student. This part represents 20% of the grade.
ii) performing laboratory practice, where students will learn to use the software that provides the teacher. This part represents 5% or qualification.
iii) Mixed objective/subjective test. This part represents 75% of the grade for students, and it's broken down as follows: 35% lessons 1 and 2 , 35% lessons 3,4 and $5,5 \%$ tasks related to laboratory practices.

Part-time students with academic dispensation are valued paragraph i) in official examinations, and 5% corresponding with activities related to laboratory practices of paragraph iii) by a practical test.

Sources of information	
Basic	- Besada Morais, M. y outros (2008). Calculo vectorial e ecuacións diferenciais. Servizo publicacións da Universidade
	de Vigo
	- Granero Rodríguez, F. (1991). Álgebra y geometría analítica. McGraw-Hill
	- Grossman, S. (1995). Álgebra lineal con aplicaciones. McGraw-Hill
	- Guillem Borrell i Nogueras (2008). Introducción a Matlab y Octave. http://iimyo.forja.rediris.es/matlab/
	- Nakos, G. e outros (1999). Álgebra lineal con aplicaciones. Thomson
	- Roberto Benavent (2010). Cuestiones sobre Álgebra Lineal. Paraninfo
	- Ladra González y otros (2003). Preguntas test de álbegra lineal y cálculo vectorial. J.B.Castro Ambroa y Copybelén
	- Prieto Sáez, E y otros (1995). Matemáticas I: economía y empresa. Centro de estudios Ramón Areces

(*) The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot $^{\text {d }}$ be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.

