		Guia d	ocente		
	Datos Iden	ntificativos			2016/17
Asignatura (*)	Ecuaciones Diferenciales			Código	770G01011
Titulación	Grao en Enxeñaría Eléctrica		'		<u>'</u>
		Descr	iptores		
Ciclo	Periodo	Cu	rso	Tipo	Créditos
Grado	1º cuatrimestre	Seg	undo	Formación Básica	6
Idioma	CastellanoGallego	'	,		'
Modalidad docente	Presencial				
Prerrequisitos					
Departamento	Matemáticas				
Coordinador/a	Cao Rial, María Teresa		Correo electrónico	teresa.cao@udc	.es
Profesorado	Cao Rial, María Teresa		Correo electrónico	teresa.cao@udc	.es
	Suarez Taboada, Maria			maria.suarez3@	udc.es
Web	moodle.udc.es				
Descripción general	Las ecuaciones diferenciales y s	sus métodos de	resolución son herran	nientas básicas para	a la descripción y el estudio de los
	modelos matemáticos más simp	oles que gobiern	an una gran variedad	de fenómenos físico	os: en el ámbito de la mecánica
	de fluidos, del electromagnetism	no, de la termod	námica o de la resiste	ncia de materiales.	En esta asignatura se realizará
	una introducción al estudio de la	as ecuaciones d	iferenciales (tanto de _l	orimer orden como d	de orden superior) y se estudiarán
	distintos métodos de resolución	tanto analíticos	como numéricos. Ade	más, se describirán	las nociones más básicas de las
	ecuaciones en derivadas parcial	les y el cálculo e	en variable compleja.		

	Competencias del título
Código	Competencias del título

Resultados de aprendizaje					
Resultados de aprendizaje	Com	petencia	as del		
			título		
Saber escribir los modelos matemáticos que gobiernan los fenómenos físicos más simples en términos de las ecuaciones	A6	B1	C1		
diferenciales.		B2			
		B4			
Entender las características básicas de las ecuaciones diferenciales: las diferencias entre los distintos tipos y las dificultades	A6	B1	C1		
de su resolución.		B2			
		B4			
Conocer y saber aplicar los distintos métodos analíticos de resolución de ecuaciones diferenciales ordinarias (tanto de primer	A6	B1	C1		
orden como de orden superior).		B2			
		B4			
Conocer y saber aplicar la transformada de Laplace para resolver sistemas de ecuaciones diferenciales ordinarias y	A6	B1	C1		
problemas de valor inicial.		B4			
Conocer y saber aplicar las series de Fourier y la transformada Z para resolver ecuaciones diferenciales ordinarias lineales	A6	B1	C1		
		B2			
		B4			
Conocer y saber aplicar los métodos numéricos más simples para aproximar la solución de ecuaciones diferenciales.	A6	B1	C1		
		B2			
		В3			
		B4			
Conocer las nociones más básicas de las ecuaciones en derivadas parciales y del cálculo en variable compleja y su relación	A6	B1	C1		
con los modelos matemáticos que gobiernan fenómenos físicos en dos y tres dimensiones.		B2			
		В3			
		B4			

Saber emplear la bibliografía de la asignatura y las herramientas TIC disponibles para encontrar la información necesaria para		В3	СЗ
resolver un problema dado		B4	C6
		В6	

	Contenidos
Tema	Subtema
Introducción a las ecuaciones diferenciales ordinarias (EDOs)	Motivación
	Terminología básica: orden, tipo e linealidad
	Solución general y solución particular
	Existencia y unicidad de solución para un problema de valor inicial de primer orden
	Algunas EDOs que gobiernan fenómenos físicos en la Ingeniería
EDOs de primer orden	Ecuaciones en variables separadas
	Ecuaciones exactas. Factor integrante
	Ecuaciones lineales
	Aplicaciones de las EDOs de primer orden
Introducción a la resolución numérica de EDOs	Motivación
	Generalidades
	Resolución numérica de un problema de valor inicial de primer orden
	Métodos de Euler y Runge-Kutta
EDOs lineales de orden superior	Ecuaciones lineales de segundo orden
·	Ecuaciones lineales homogéneas con coeficientes constantes
	Solución general
	Ecuaciones lineales no homogéneas con coeficientes constantes
	Ecuaciones lineales de orden superior. Aplicaciones.
Transformada de Laplace	Definición de la transformada de Laplace
	Cálculo y propiedades de la transformada de Laplace
	Transformada inversa de Laplace
	Aplicación a la resolución de sistemas lineales de ecuaciones diferenciales
	Aplicaciones en la Ingeniería Eléctrica
Resolución de sistemas lineales de EDOs	Sistemas de ecuaciones diferenciales lineales de primer orden
	Estructura de los conjuntos de soluciones
	Wronskiano de un conjunto de funciones
	Resolución de sistemas homogéneos con coeficientes constantes
Series de Fourier y transformada Z	Definición de las series de Fourier y la transformada Z
	Cálculo y propiedades de las series de Fourier y transformada Z
	Transformada Z inversa
	Aplicaciones a la resolución de EDOs de orden superior
Introducción a las ecuaciones en derivadas parciales (EDPs)	Definición de EDP: orden y solución de una EDP
	EDPs de segundo orden lineales
	Introducción a las ecuaciones clásicas: ecuaciones del calor y de ondas
	Método de separación de variables

	Planificac	ión		
Metodologías / pruebas	Competéncias	Horas presenciales	Horas no presenciales / trabajo autónomo	Horas totales
Sesión magistral	B2 B3 B4 C1	21	42	63
Prácticas de laboratorio	A6 B1 B3 B4 B6 C3	9	9	18
Prueba mixta	A6 B1 B2 C1 C6	4	0	4

Seminario	A6 B1 B2 B3 B7 C1	21	42	63
Atención personalizada		2	0	2

(*)Los datos que aparecen en la tabla de planificación són de carácter orientativo, considerando la heterogeneidad de los alumnos

	Metodologías
Metodologías	Descripción
Sesión magistral	Exposición en la pizarra o con la ayuda de medios audiovisuales, los contenidos especificados en el programa de la
	asignatura. La finalidad de estas sesiones es proporcionar al alumnado los conocimientos básicos que le faciliten el
	aprendizaje y le permitan abordar el estudio de la materia del modo más autónomo posible, con la ayuda de la bibliografía y
	de los ejercicios que se propongan a lo largo de todo el curso
Prácticas de	Prácticas interactivas en las que se resolverán problemas aplicados relacionados con los contenidos del curso con la ayuda
laboratorio	del programa de ordenador Matlab/Octave (mediante el uso de procedimientos tanto de cálculo simbólico como numérico).
	Estas prácticas se desarrollarán en el aula de informática.
Prueba mixta	Realización de un examen escrito que consistirá en una colección de cuestiones teóricas y de problemas (del mismo tipo que
	las cuestiones y problemas propuestos en las sesiones expositivas y seminarios).
Seminario	Sesiones en las que fundamentalmente se tratará de resolver las dudas planteadas por los alumnos. Del mismo modo, se
	trabajarán también la resolución de ejercicios propuestos en las sesiones expositivas y se dará continuidad, desde un punto
	de vista analítico, a aquellos problemas propuestos en las prácticas de ordenador.

	Atención personalizada
Metodologías	Descripción
Seminario	a) La diversidad del alumnado y de su formación hace recomendable una orientación personalizada, que podría llevarse a
Prácticas de	cabo en el marco de una acción tutorial
laboratorio	b) En las prácticas de ordenador, el profesorado presente en el aula de informática ayudará al alumnado en el desarrollo de
	los problemas enunciados en las sesiones prácticas, tanto en el manejo del programa de ordenador Matlab/Octave como en
	la comprensión de los aspectos teóricos y prácticos de las ecuaciones diferenciales
	c) Durante los seminarios, el profesorado hará un seguimiento más detallado del alumnado en el proceso de su aprendizaje
	mediante la resolución de cuestiones teóricas, resolución de problemas y aplicaciones a problemas simples en el ámbito de la
	Ingeniería Eléctrica.

		Evaluación	
Metodologías	Competéncias	Descripción	Calificación
Seminario	A6 B1 B2 B3 B7 C1	Participación activa y trabajo realizado en la resolución de cuestiones teóricas y	20
		problemas prácticos (de forma individual o en grupos muy reducidos)	
Prueba mixta	A6 B1 B2 C1 C6	Prueba escrita que incluye resolución de problemas y cuestiones breves (referentes	75
		tanto a contenidos teóricos como a las prácticas de ordenador)	
Prácticas de	A6 B1 B3 B4 B6 C3	Resolución de problemas de carácter práctico e ilustración de aspectos teóricos con	5
laboratorio		la ayuda del programa de ordenador Matlab/Octave	

Observaciones evaluación

La calificación final de la asignatura consta de tres partes:

la calificación de las

prácticas de laboratorio mediante entregas: NP (entre 0 y 0.5)la calificación de la prueba

mixta: NE (entre 0 y 7.5), de los cuales 0.5 corresponden a una prueba final de

prácticas de laboratorio y 7 puntos de la prueba final teórico-práctica.la calificación de los

seminarios: NS (entre 0 y 2), de los cuales 1 punto corresponde a entregas y 1 punto a la prueba parcial.La calificación final será la suma de NP+NE+NS siempre y cuando se cumplan las siguientes condiciones:

las ausencias

injustificadas en los seminarios no

superen el 20% la calificación de la

prueba mixta NE sea mayor que 2.65.En caso contrario, la calificación final será la nota obtenida en la prueba mixta (7.5 como máximo).Tanto las calificacións NP como NS se conservarán en la segunda oportunidad

de evaluación.

En caso de querer evaluarse únicamente con un prueba mixta puntuada de 0 a 10, el alumno tendrá que solicitarlo explícitamente a principio de curso, antes de que se realice cualquiera de las pruebas de evaluación continua de laboratorio o seminarios. En cuanto se realice alguna de las entregas o la prueba parcial, no se podrá renunciar a la evaluación continua.

En el caso de alumnos matriculados a tiempo parcial con dispensa académica, la calificación constará de:

la calificación de una memoria de prácticas de ordenador: NP (entro 0 y 0.5) la calificación de la prueba mixta: NE (entre 0 y 7.5) la calificación de un trabajo aplicado a un problema real de la Ingeniería: NS (entre 0 y 2) La calificación final será la suma de NP+NE+NS para los alumnos matriculados a tiempo parcial con dispensa académica.

	Fuentes de información			
Básica	- R. K. Nagle, E. B. Saff (1992). Fundamentos de ecuaciones diferenciales. Addison-Wesley			
	- C. H. Edwards, D. E. Penney (2008). Elementary Differential Equations. Prentice-Hall			
	- R. K. Nagle, E. B. Saff (2005). Ecuaciones diferenciales y problemas con valores en la frontera. Pearson Education			
	- D. G. Zill (2002). Ecuaciones diferenciales con aplicaciones de modelado. Thomson learning			
	- G. F. Simmons (1991). Ecuaciones Diferenciales. Mcgraw-Hill			
	- M. Braun (1990). Ecuaciones Diferenciales y sus Aplicaciones. Ed. Iberoaméricana			
	- W. R. Derrick, S. I. Grossman (1984). Ecuaciones Diferenciales con aplicaciones. Fondo Educativo Interamericano			
	- J. Gonzalez Montiel (1988). Problemas de ecuaciones diferenciales. Publ. Univ. Politécnica de Madrid			
	- P. Quintela (2001). Ecuaciones Diferenciales. Tórculo			
	- W. E. Boyce, R. C. DiPrima (2005). Elementary Differential Equations and Boundary Value Problems. John Wiley			
	& Sons			
	- S. L. Ross (1992). Ecuaciones Diferenciales. Reverté			
	- M. R. Spiegel (2001). Transformadas de Laplace. Mcgraw-Hill			
Complementária	- S. Rosloniec (2008). Fundamental Numerical Methods for Electrical Engineering. Springer (Capítulos 6-8)			
	- T. B. A. Senior (1986). Mathematical Methods in Electrical Engineering. Cambridge University Press (Capítulos 2,4)			

Recomendaciones
Asignaturas que se recomienda haber cursado previamente
Cálculo/770G01001
Física I/770G01003
Algebra/770G01006
Asignaturas que se recomienda cursar simultáneamente
Asignaturas que continúan el temario
Otros comentarios

Estudio diario de los contenidos tratados en las sesiones expositivas, complementados con el curso virtual y la bibliografía recomendada Resolución tanto de los ejercicios propuestos en las sesiones presenciales como de otros encontrados en la bibliografía recomendada Revisar periódicamente las prácticas de ordenador, para lo que se dispone de las aulas de Informática de libre acceso en el centro Uso de las horas de tutoría del profesorado para resolver todo tipo de dudas sobre los contenidos de la asignatura.

(*) La Guía Docente es el documento donde se visualiza la propuesta académica de la UDC. Este documento es público y no se puede modificar, salvo cosas excepcionales bajo la revisión del órgano competente de acuerdo a la normativa vigente que establece el proceso de elaboración de guías