

		Teaching Guide				
Identifying Data				2017/18		
Subject (*)	Experimental Physical Chemistry Code			Code	610G01019	
Study programme	Grao en Química				L.	
		Descriptors				
Cycle	Period	Year		Туре	Credits	
Graduate	2nd four-month period	Third		Obligatoria	6	
Language	SpanishEnglish				· · · ·	
Teaching method	Face-to-face					
Prerequisites						
Department	Química					
Coordinador	Vilariño Barreiro, Maria Teresa		E-mail	teresa.vilarino@u	udc.es	
Lecturers	Armesto Barbeito, Xose Luis E-mail		E-mail	xose.luis.armesto@udc.es		
	Barriada Pereira, José Luis			jose.barriada@udc.es		
	Herrero Rodriguez, Roberto			r.herrero@udc.es	3	
	Rodriguez Barro, Pilar			pilar.rbarro@udc	.es	
	Sastre De Vicente, Manuel Esteban		manuel.sastre@udc.es			
	Vilariño Barreiro, Maria Teresa teresa.vilarino@u			udc.es		
Web	campusvirtual.udc.es					
General description	Integrated laboratory with special emphasis on applications of the main instrumental techniques.			iques.		
	The course explores the experimental methodology of Physical Chemistry and it is intended to enable students to interpret					
	the experimental results from the theoretical models developed in the previous course of Physical Chemistry 3. The					
	development of critical thinking that allows integrating the theoretical experiment is a very important aspect in the overall					
	education of a chemist. Moreover, it introduces students to the management of the most common instrumental techniques					
	in any chemistry laboratory. (English lecturers: Teresa Vilariño/José Luis Barriada)					

	Study programme competences
Code	Study programme competences
A1	Ability to use chemistry terminology, nomenclature, conventions and units
A5	Understanding of principles of thermodynamics and its applications in chemistry
A14	Ability to demonstrate knowledge and understanding of concepts, principles and theories in chemistry
A16	Ability to source, assess and apply technical bibliographical information and data relating to chemistry
A17	Ability to work safely in a chemistry laboratory (handling of materials, disposal of waste)
A18	Risk management in relation to use of chemical substances and laboratory procedures
A19	Ability to follow standard procedures and handle scientific equipment
A20	Ability to interpret data resulting from laboratory observation and measurement
A21	Understanding of qualitative and quantitative aspects of chemical problems
A22	Ability to plan, design and develop projects and experiments
B2	Effective problem solving
B3	Application of logical, critical, creative thinking
B4	Working independently on own initiative
B5	Teamwork and collaboration
C1	Ability to express oneself accurately in the official languages of Galicia (oral and in written)
C3	Ability to use basic information and communications technology (ICT) tools for professional purposes and learning throughout life

Learning outcomes	
Learning outcomes	Study programme
	competences

To acquire practical skills needed for experimental quantification of the thermodynamic and electrochemical properties of	A17	B2	C3
chemical systems.	A18	B3	
	A19		
	A22		
To acquire skills in the treatment of the measurements in the laboratory and skill in the use of software to carry out the	A20	B2	
analysis of experimental data.	A21	B3	
	A22		
To acquire practical skills in the application of instrumental techniques most commonly used in chemistry to the study of	A19	B2	
systems of physicochemical interest.	A22	B3	
To analyze and interpret the result of a chemical experiment from fundamental theoretical concepts of Physical Chemistry.	A5	B2	
	A14	B3	
	A20		
	A21		
	A22		
To write a comprehensive report of experimental work using appropriate scientific language.	A1	B3	C1
	A16	B4	СЗ
	A20		
To learn how to search, use and cite required bibliographic information.	A16	B4	C3
		B5	

	Contents
Торіс	Sub-topic
Chemical Thermodynamics practical demonstrations that do	1. Partial molal volumes of a binary mixture.
not require instrumental techniques	2. Molecular masses by cryoscopy measurements.
	3. Activity of an electrolyte by cryoscopy measurements.
	4. Molecular masses by distillation of mixture of two immiscible liquids.
	5. Phase diagram of a ternary system.
	6. Determination of the equilibrium constant.
	7. Determination of heat of solution for benzoic acid by solubility measurements.
	8. Partition coefficient. Application to the calculation of an equilibrium constant.
	9. Determination of the solubility of a compound sparingly soluble in several saline
	media. Common ion effect and salting effect.
	10. Chemical equilibrium. Determination of DG0, DH0 and DS0.
	11. Diagram of solid-liquid phase of a binary system.
Chemical Thermodynamics practical demonstrations that	12. Determination of the phase diagram of a vapor-liquid binary system.
incorporate instrumental techniques	13. Spectrophotometric determination of the equilibrium constant of an indicator.
	14. Characterization of a coordination compound by spectrophotometric
	measurements.
	15. Potentiometric determination of the dissociation product of water by Gran's
	method.
	16. Dye adsorption isotherms.

	Planning	J		
Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
Seminar	A5	4	3	7
Laboratory practice	A1 A14 A16 A17 A18	56	84	140
	A19 A20 A22 B3 B4			
	B5 C1 C3			

Mixed objective/subjective test	A1 A5 A14 A20 A21	3	0	3
	B2 B3 C3			
Personalized attention		0		0
				• •

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies				
Methodologies	Description				
Seminar	Practical experiments to perform are proposed. These experiments are related to the theoretical contents of Physical				
	Chemistry 3 subject. Different experimental methodologies are proposed and a specific experimental procedure is discussed.				
Laboratory practice	Each student is assigned a certain number of practical experiments to be performed individually. The experiments will be				
	indicated in advance in order to prepare both the theoretical background and experimental procedure before going into the lab.				
	During the laboratory work, the student must show a responsible attitude in relation with both the safety regulations and the				
	methodology and rigour of the scientific method.				
	The experimental results of each experiment should be analyzed and discussed adequately, being neccesary the use of				
	computer resources.				
	Each student must hand in a written report of each of the experiments done. This report must contain all the experimental				
	data, its analysis and the critical discussion of the results obtained. The report must be written following the guidelines of a				
	scientific report.				
Mixed	Assessment of all the contents worked on the subject, both the theoretical background and the experimental contents, related				
objective/subjective	with the procedure, the analysis of data and the discussion of the results.				
test					

	Personalized attention
Methodologies	Description
Laboratory practice	Solving any doubts individually and guiding the student in relation to course content.
	Part-time students and those with special academic leave permission could ask for presential or email tutorials when necessary.

Assessment				
Methodologies	Competencies	Description	Qualification	
Laboratory practice	A1 A14 A16 A17 A18	The assessment of laboratory practices includes:	50	
	A19 A20 A22 B3 B4	1) Continuous assessment of the work done by the student in the laboratory,		
	B5 C1 C3	considering the skills and knowledge achieved, the answers to the questions made		
		during the lab, as well as the experimental data, its analysis and discussion.		
		The lack of knowledge and/or attitude during the experimental work in the lab will be		
		reason for expulsion from the lab.		
		It is compulsory to complete the whole period of laboratory sessions to pass the		
		subject.		
		2) The report prepared for each one of the experiments carried out, which must		
		include all the experimental data, its analysis and the critical discussion of the results		
		obtained. In addition, the report must be written following the guidelines of a scientific		
		report.		

Mixed	A1 A5 A14 A20 A21	Written test to evaluate the contents of the subject, both the theoretical background of	50
objective/subjective	B2 B3 C3	the experiments and the analysis and discussion of the experimental results.	
test		It constitutes 50% of the final grade at the first opportunity, but students must obtain a	
		minimum of 3.5 points out of 10 in the written test to pass the course.	
		In the second opportunity, the written test will represent 100% of the final grade.	
		Assessment comments	
Attendance at all semi	inars and practices is cor	npulsory for the student to pass the course.	
First opportunity asses	·		
The			
	ect when the average of	the marks obtained in the different methodologies of assessment is equal to or greater than	5.0 points
	-	est is equal or greater than 3.5 points out of 10.	
		eving the minimum mark in the written test	
	•	methodologies was equal to or	
C // C	subject appears as failed		
-		m of 0.5 points as a result of the evaluation of the overall student's progression.	
		he students who do not engage in any practice session in the lab.	
Second opportunity as	ssessement:		
Students who do			
not pass the continuou	us assessment of the pra	ctical work in the	
laboratory must pass	an experimental test at th	he lab.	
The			
students who pass th	e continuous assessmen	t of the practical work in	
the laboratory will hav	e to pass a test in the cla	ssroom that will represent 100% of the final grade.	
Students evaluated in	the "second opportunity"	will only be eligible for	
Honors if the maximu	m number of licenses for	the corresponding course	
has not been fully cov	ered in the "first opportur	ity"	
Should it be more can	didates to honors grade t	than licenses available, allocation of licenses could be done through a extraordinary exam.	
The teaching-learning	process, including asses	ssment, refers to an	
academic course and,	therefore, will restart as	new with every new	
academic year, includ	ing all activities and asse	essment procedures	
scheduled for that cou	irse.		
Part-time students and	d students with special ac	cademic permission (according to the rules of the UDC):	
	-	Il activities is mandatory. As far as possible, it will be tried to fit the schedule of the practical	sessions t
the availability of stude	ents.		
-		second opportunity, will be the same as for the rest of the students.	

Sources of information

Basic	- Denbigh, K. (1985). Equilibrio Químico . Madrid. AC
	- Matthews, G.P (1985). Experimental Physical Chemistry. Boston. Oxford Science Pub
	- Shoemaker, D.P.; Garland, G.W.; Nibler, J.W. (2009). Experiments in Physical Chemistry 8ª ed McGraw-Hill
	- Levine, I.N. (2004). Fisicoquímica . McGraw-Hill
	- Sime, R.J (1990). Physical Chemistry: Methods, techniques, experiments Philadelphia. Saunders College
	Publishing
	- Ruix Sánchez, J.J.; Rodríguez Mellado, J.M.; Muñoz Gutiérrez, E., Sevilla Suárez de Urbina, J.M. (2003). Curso
	experimental en Química Física. Síntesis
	- M. S. Robinson F. L. Stoller, B. Horn, and W. Grabe "Teaching and Applying Chemistry-Specific Writing Skills Using
	a Simple, Adaptable Exercise" J. Chemical Education, 86 , 45, (2009) -D. C. Harris. "Nonlinear least-squares
	curve fitting with Microsoft Excel Solver" J. Chemical Education, 75 , 119 (1998)- M. S. Robinson F. L. Stoller,
	B. Horn, and W. Grabe "Teaching and Applying Chemistry-Specific Writing Skills Using a Simple, Adaptable Exercise"
	J. Chemical Education, 86, 45, (2009) -D. C. Harris. "Nonlinear least-squares curve fitting with Microsoft Excel Solver"
	J. Chemical Education, 75, 119 (1998)
Complementary	- Sime, R.J. (2005). Physical chemistry calculations with Excel, Visual Basic, Visual Basic with applications, Mathcad,
	Mathmatica. San Francisco: Pearson

Recommendations
Subjects that it is recommended to have taken before
Chemistry Laboratory 1/610G01010
Physical Chemistry 3/610G01018
Chemistry Laboratory 2/610G01032
Subjects that are recommended to be taken simultaneously
Physical Chemistry 3/610G01018
Subjects that continue the syllabus
Advanced Physical Chemistry/610G01020
Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.