		Teaching	Guide		
	Identifying D	Data			2017/18
Subject (*)	Calculus Cod		Code	614G01003	
Study programme	Grao en Enxeñaría Informática				
		Descrip	otors		
Cycle	Period	Yea	ır	Туре	Credits
Graduate	1st four-month period	Firs	st	FB	6
Language	SpanishGalicianEnglish		,		'
Teaching method	Face-to-face				
Prerequisites					
Department	Matemáticas				
Coordinador	Gonzalez Taboada, Maria		E-mail	maria.gonzalez	taboada@udc.es
Lecturers	Arregui Alvarez, Iñigo		E-mail	inigo.arregui@u	udc.es
	Cendan Verdes, Jose Jesus			jesus.cendan.v	erdes@udc.es
	Garcia Abel, Marta			marta.gabel@u	ıdc.es
	García Rodríguez, José Antonio			jose.garcia.rodr	riguez@udc.es
	Gonzalez Taboada, Maria			maria.gonzalez	taboada@udc.es
	Hervella Nieto, Luis Maria			luis.hervella@u	ıdc.es
	Iglesias Otero, Maria Teresa			maria.teresa.iot	tero@udc.es
	López Núñez, Alejandro			alejandro.lopez	n@udc.es
Prieto Aneiros, Andrés an		andres.prieto@	andres.prieto@udc.es		
	Salvador Mancho, Beatriz			beatriz.salvado	r@udc.es
Web	dm.udc.es/elearning/	'			
General description	In this subject we explain concepts o	of the analysis	s of real functions of	of a real variable (cor	ntinuity, derivative, integration, .
	with applications in real problems of	optimisation	and approximation	of functions.	

	Study programme competences		
Code	Code Study programme competences		
A1	Capacidade para a resolución dos problemas matemáticos que se poden presentar na enxeñaría. Aptitude para aplicar os coñecementos sobre: álxebra linear; cálculo diferencial e integral; métodos numéricos; algorítmica numérica; estatística e optimización.		
В3	Capacidade de análise e síntese		

Learning outcomes			
Learning outcomes	Study	y progra	amme
	COI	mpeten	ces
Being able to analyze functions of a real variable:	A1	В3	
- Limits , continuity, differentiation, optimization and graphical representation			
- Definite and indefinite integration and its application to the calculation of areas and volumes , as well as solving differential			
equations.			
Being able to use a computer application symbolic computation and computational development of the contents of the subject		В3	

Contents		
Topic	Sub-topic Sub-topic	
Real valued functions of one real variable	- Real valued functions of one real variable	
	- Elemental functions	
	- Limit of a function at one point	
	- Continuity	
	- Bisection method	
	- Lagrange interpolation	

Differential calculus of real valued functions of one real	- Differentiability
variable	- Derivative of elementary functions
	- Newton-Raphson Method
	- Relative and absolute extrema
	- Theorems of differential calculus
	- Immediate applications of derivatives
	- Higher order derivatives
	- Taylor's theorem
	- Implicit and logarithmic differentiation
Integral calculus of real valued functions of one variable	- The Riemann integral
	- Elemental methods for the calculus of primitives
	- Improper integrals
	- Applications of the integral
	- Numerical integration
	- Introduction to differential equations

	Plannin	g		
Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
Guest lecture / keynote speech	A1 B3	30	60	90
Laboratory practice	A1 B3	18	18	36
Seminar	A1 B3	9	9	18
Mixed objective/subjective test	A1 B3	0	3	3
Personalized attention		3	0	3

	Methodologies
Methodologies Description	
Guest lecture /	- Presentations in .pdf format (previously provided to students) containing the basic notes to follow the development of the
keynote speech	subject, will be maid using a projector
	- Theory will be presented using the blackboard and providing clarifying examples
	- applets created explicitly for the subject and others available on the Internet will be used to illustrate some aspects of the
	subject.
Laboratory practice	- The use of the software package Octave, which will be used in the subject for symbolic and numerical computation, will be
	taught.
	- Problems related to the subject will be solved using Octave
Seminar	- In small groups tutories (TGR), which are called " Seminars " in this guide, doubts of students will be solved, as
	well as exercises of the problems sets -available on beforehand- or other problems proposed by the teacher or the students.
	- In some seminars students can do, voluntarily, a project related with the Sustainable Development Goals (SDG). In this
	educational task, the student will associate the contents of this subject with some of the SGD.
Mixed	- A written exam, consisting of a collection of theoretical and/or problems issues (of the same type as those proposed in the
objective/subjective	seminars (TGR) and problems sets exercises) will be done
test	

Personalized attention	
Methodologies Description	

Laboratory practice Seminar

- The diversity of the students and their formation recomends giving an orientation, that should be carried out in the framework of a personalized tutorial action.
- In the laboratory sessions the teacher, who will be present in the clasroom, will guide and helo students to develop the practises, teaching them in the use of a software package, helping them to understand some theoretical and practical aspects of the subject.
- During the seminars (TGR) the teacher will help the students in the resolution of theoretical and applied exsercises.

Without forgetting that, as already mentioned, that doubts can also be solved in a more personal way in the tutorial hours of the teacher.

	Assessment		
Methodologies	Competencies	Description	Qualification
Laboratory practice	A1 B3	Students will do 2 exams during laboratory classes that will represent 30% of the final qualification.	30
		Only part-time students that have not been evaluated of laboratory practice can do a specific exam to recover the 30% of the mark corresponding to this part.	
Seminar	A1 B3	During the course, students will do a written exam with a maximum qualification of 10%. Those students who do not obtain the maximum qualification in this written exam, can recover the missing part when they do the final exam. Eventually according to the teacher, the student can obtain this 10% of the qualification doing a project related with the Sustainable Development Goals (SDG).	10
Mixed objective/subjective test	A1 B3	The final exam, with a value between 50 and 70% (depending on the qualification obtained in the Guest lecture exam and the Seminar exam) will consist of a written exam of theory and exercises.	50
Guest lecture / keynote speech	A1 B3	During the course, students will do a written exam with a maximum qualification of 10%. Those students who do not obtain the maximum qualification in this written exam, can recover the missing part when they do the final exam.	10

Assessment comments

The student will finish the classes period with a maximum of 50% of the qualification, that will be obtained through two written exams (10% each one) and two exams corresponding to the laboratory practice (30%).

In the dates stablished by the Faculty Board, the student will do a written exam. The grade obtained in the final exam will be rescheduled so that the student has the opportunity to recover the lost part of the 20% of the grade corresponding to the written examinations made during the guest lectures and the seminars. It is not possible to recover the mark corresponding to the evaluation of the laboratory practices. In this way, the final mark of the final exam will be between 5 and 7 points out of 10.

The evaluation of the guest lectures, seminars and laboratory practices of students with part-time enrollment can be made taking into account, as far as possible, their particular circumstances.

With regard to the special call of December, the evaluation process will include:

- A) a mixed test that will score a maximum of seven points,
- B) a test to assess knowledge acquired in laboratory practice, which shall not exceed three points.

Sources of information		
Basic	- R.T. Smith, R.B. Minton (2002). Calculus (Second edition). McGraw-Hill	
	- J. Stewart (2001). Cálculo de una variable. Thomson Learning	
	- M.T. Iglesias Otero (2011). MatLab para Cálculo en una variable. Andavira	

Complementary

- G.L. Bradley, K.J. Smith (1998). Cálculo 1. Prentice Hall
- F. Coquillat (1997). Cálculo Integral. Metodología y problemas. Tébar Flores
- A. Estévez Andreu, J. Enciso Pizarro (2005). Matemáticas (serie "Aprueba tu examen con Schaum"). McGraw-Hill
- F. Galindo Soto, J. Sanz Gil, L.A. Tristán Vega (2003). Guía práctica de Cálculo Infinitesimal en una variable real. Thomson
- A. García, A. López, G. Rodríguez, S. Romero, A. De La Villa (2002). Cálculo (vol. 1). CLAGSA
- B.D. Hahn, D.T. Valentine (2007). Essential Matlab for Engineers and Scientistics (3th ed.) . B.H.
- S. Josa (1992). Cómo iniciarse en la resolución de integrales. Edunsa
- S. Lantarón Sánchez, B. Llanas Juárez (2010). Matlab y Matemática Computacional . Bellisco Ediciones
- R. Larson, R. Hostetler, B.H. Edwards (2010). Cálculo Esencial. Cengage Learning
- C. Neuhauser (2004). Matemáticas para Ciencias. Pearson
- V. Tomeo Perucha, I. Uña Juárez, J. San Martín Moreno (2005). Problemas resueltos de Cálculo en una variable.

Thomson

Recommendations

Subjects that it is recommended to have taken before

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Numerical Methods for Computing/614G01064

Other comments

Daily work is recommended for getting optimal profit from the seminars (TGR) and laboratory practices. Also assistance to the master classes is recommended

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.