

Teaching Guide					
	Identifying Data 2017/18				
Subject (*)	Structures 1			Code	630G02019
Study programme	Grao en Estudos de Arquitectura	l			
		Descri	ptors		
Cycle	Period	Ye	ar	Туре	Credits
Graduate	2nd four-month period Second Obligatoria				6
Language	Spanish	Spanish			
Teaching method	Face-to-face				
Prerequisites					
Department	Construcións e Estruturas Arquitectónicas, Civís e AeronáuticasEnxeñaría Civil				
Coordinador	Muñoz Vidal, Manuel E-mail manuel.munoz@udc.es			dc.es	
Lecturers	Muñoz Vidal, Manuel	Muñoz Vidal, Manuel E-mail		manuel.munoz@udc.es	
	Sabin Diaz, Patricia patricia.sabin@udc.es			c.es	
	Suárez Riestra, Félix Leandro felix.suarez@udc.es			es	
	Tabernero Duque, Fernando Maria fernando.tabernero@udc.es			o@udc.es	
Web				·	
General description	Knowledge Theory of Elasticity a	nd Strength of N	laterials		

Study programme competences / results

Code

Study programme competences / results

Learning outcomes			
Learning outcomes	Study	/ progra	mme
			00/
	COII	ipeteric	627
	results		
Knowledge of Elasticity, Plasticity and Strength of Materials. Indeterminate systems. Numerical and computer methods of	A56	B1	
structural analysis.	A57	B2	
	A58	B4	
		B5	
		B7	
		B11	
		B15	
		B21	
		B22	
		B24	
The student will acquire skills for pre-dimensioning, design, calculation and testing of structures and to direct its material	A57	B4	
execution	A58	B5	
		B7	
		B15	

Contents		
Topic Sub-topic		
01 STRESS STATE	1 Stress concept: Normal and tangential	
	2 Intrinsic components of the stress components	
	3 Stress in function of the orientation of the section	
	4 Graphical representations of the stress intrinsic components. Mohr circle.	
	5 Cauchy Theorem	
	6 Plane stress state	
	7 Main directions	

02 DEFORMATIONS AND DISPLACEMENTS	1 Specific deformations
	2 Angular deformations or angular rotations
	3 Plane deformational state. Deformation tensor.
	4 Intrinsic components graphic. Mohr circle.
	5 Extensometry
03 MECHANIC RESPONSE OF THE MATERIALS	1 Elastic constants of the materials
	2 Hooke's law
	3 Lame equations
04 MATERIALS RESISTANCE	1 Solid elastic concept. Mechanic prism.
	2 Efforts. Section method. Equivalence equations
	3 Relatively resilient and Bernoulli hypothesis.
	4 Saint-Venant Principle and combining or overlay effects.
	5 Stress-deformation diagrams. Mechanic properties
	6 Fail Criteria
	7 Introduction to Structural calculation. Limited States.
	8 Probability methods and partial safety factors
05 AXIAL FORCE	1 Stress conditions and uniaxial deformational conditions
	2 Strength of bars
	3 Resolution of monoaxial hyperstatic problems
	4 Introduction of the buckling problems. Euler critical load.
	5 Introduction to axial plasticity.
06 SHEAR FORCE	1 Elemental theory
	2 Connecting elements
	3 Smugglers calculation
07 PURE BENDING	1 Hypothesis or assumptions and general solutions
	2 Simetric pure bending. Navier law. Resistant module
	3 Sections calculation
	4 Differential equations or the elastic line.
	5 Plasticity introduction in pure bending
08 SIMPLE BENDING	1 Colignon formulation
	2 Principal stress. Isostatic
	3 Beams calculations
09 DEVIATION BENDING	1 Normal and shear stresses
	2 Bend allowance
	3 Analysis of deformations
10 BENDING (COMPOUND FLEXURE)	1 Normal and shear stresses. Neutral axis
	2 Pressure center and neutral axis
	3 Central core or central nucleus. Concept. Determination.
11 TORSION	1 Simple torsion and pure torsion.
	2 Torsion in cylindrical bars. Coulomb theory.
	3 Torsion in no circular cross-section prisms
	4 Design consideration in elements with torsion

Planning				
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Guest lecture / keynote speech	A56 A57 A58	29	29	58
Directed discussion	B1	1	1	2
Problem solving	A56 B2	15	30	45

Objective test	B2 B11	8	16	24
Supervised projects	B4 B5 B7 B11 B15	2	10	12
	B21 B22 B24			
Seminar	B24	2	3	5
Directed discussion	B1	1	1	2
Personalized attention		2	0	2

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description
Guest lecture /	They are given to the entire group. In these aspects considered necessary for the development of the field grow.
keynote speech	
Directed discussion	Presentation and discussion of specific issues.
Problem solving	Practical problem solving related to the subject. This resolution can be carried out by the teacher, students or mixed form
Objective test	Individual practices throughout the course
Supervised projects	Development work throughout the course with teacher assistance
Seminar	Special class development to focus some of the practical proposals
Directed discussion	Discusión cuestions teóricas

Personalized attention		
Methodologies	Description	
Supervised projects	Please direct students to the ward focus and work for discussion and solution of theoretical questions and troubleshooting	

Assessment			
Methodologies	Competencies /	Description	Qualification
	Results		
Supervised projects	B4 B5 B7 B11 B15	GLOBAL PRACTICE	10
	B21 B22 B24	- Participation and collaboration in group	
		- Original Contributions	
		- Structure and presentation	
		- Quality of documentation	
Objective test	B2 B11	PARTIAL TEST	80
		- Troubleshooting	
		- Mastery of theoretical knowledge	
		- Structuring content	
		- Planning, clarity and precision	
		- Mastering the art of operational	
Problem solving	A56 B2	INTERACTIVE PRACTICE	10
		- Attendance and active participation in class	
		- Carrying out practical	
		- Application of knowledge acquired	

Assessment comments

One possible continuous assessment as intended, so to pass the course must complete and submit a series of tests and work along the same. For the processing of the material, the delivery of virtual or electronic record of the student will be detailed as requested.

Facing the course note the following aspects, which have a different weight in the final grade, as broken down in the table of assessment will be assessed:

* Class attendance is mandatory understood, verifying by means of interactive practices, with the ability to use the notes and the material that the teacher sees fit. These practices will be made without notice.

* Throughout the course an overall practice or work directed by the teacher, the revisions will be made or specific monitoring will be developed, but the student will develop on their own. It is anticipated that this work will be developed in the group consisting of 4 students, and build capacity for organization and a cooperative attitude.

* Throughout the course about exams, which consist of questions, problem type, and may also contain conceptual topics will be made. Will be individual and will not be able to see some literature. Must obtain a minimun of 3 pts in each exam.

Satisfactorily overcoming the above aspects, students can obtain the approval of the course without having to go the final tests. 2nd student enrollment or later, they will follow the course in the same conditions as those of first enrollment to be eligible to pass the course.

* If it is not approved by course, in the first final opportunity of course there will be a written test or exam. The result of this test counted as partial evidence of progress. The assistance will be weighted as global practice during the course.

* In the second final suitability of course there will be a written test or exam containing problems and a series of short questions of theoretical nature. The student may submit this final test without having to meet any other requirement rather than included in the records of the subject. In this case the total weight of the note will be the test.

For the experiments and examination materials will be permitted only:

- ID card or other identification

- Material of writing and drawing

- Calculator

- A summary sheet of formulas

- Mobile phones is expressly prohibited

The offset will consider structuring content, order submission and accuracy of results. Take into account the errors of concepts generally considered very serious, and may nullify the whole exercise.

	Sources of information
Basic	
Complementary	1 BEDFORD, A.; LIECHTI, K. M. Mecánica de materiales. Prentice-Hall Inc. Pearson Educación deColombia Ltda.
	Bogotá, 2002.2 BYARS, E. F.; SNYDER, R. D. Mecánica de cuerpos deformables. Representación y Servicios de
	IngenieríaS.A. México, 1978. 3ª edición. 3 GERE, J. M.Timoshenko. Resistencia de materiales. Thomson. Madrid,
	2002.5ª edición. 4 GONZÁLEZ TABOADA, J.A.Tensiones y deformaciones en materialeselásticos.Universidad de
	Santiago de Compostela, 1989. 5 ORTIZ BERROCAL, L.Elasticidad.Universidad Politécnica deMadrid. Madrid, 1985.
	6 HIBBELER, R. C.Mecánica de materiales.Prentice Hall Hispanoamericana S.A. México,1998. 3ª edición. 7 ORTIZ
	BERROCAL, L.Resistencia de materiales.McGraw-Hill. Madrid, 2002. 2ª edición (1ª edición de1980). 8 POPOV, E. P.;
	BALAN, T. A. Mecánica de sólidos.Pearson Educación. México, 2000. 2ª edición.

Recommendations
Subjects that it is recommended to have taken before
Mathematics I/670G01001
Applied Fhysics I/670G01002
Subjects that are recommended to be taken simultaneously
Mathematics II/670G01006
Construction I/670G01009
Subjects that continue the syllabus
Structures II/670G01025
Structures III/670G01034
Other comments

Previously reviewed the matter on which previous course work repeatedly, as is recommended: - Geometry mass - Resolution of articulated structures - Diagrams efforts beams and frames The continued treatment of the subject we recommend a review every day of what was discussed in class, planning the doubts that may arise in the next class or tutorial hours. Besides monitoring of classes, the student should consult the literature and recommended material for each part of the subject.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.