		Teaching	g Guide			
	Identifying	Data			2017/18	
Subject (*)	Calculus Code		730G03001			
Study programme	Grao en Enxeñaría Mecánica					
	·	Descri	ptors			
Cycle	Period	Yea	ar	Туре	Credits	
Graduate	1st four-month period	Fire	st	FB	6	
Language	SpanishGalician					
Teaching method	Face-to-face					
Prerequisites						
Department	Matemáticas					
Coordinador	Benitez Garcia, Marta E-mail marta.benitez@udc.es			udc.es		
Lecturers	Benitez Garcia, Marta E-mail marta.benitez@udc.es		udc.es			
	Brozos Vázquez, Miguel			miguel.brozos.v	azquez@udc.es	
	Calvo Garrido, María Del Carmen			carmen.calvo.ga	arrido@udc.es	
Web	campusvirtual.udc.es/moodle					
General description	This introductory calculus course c	overs different	tiation and integra	tion of functions of one	e and several variables. Topics	
	include: the study of functions of or	ne and severa	l variables, their co	ontinuity and differenci	iability; Taylor polynomials and its	
	application in optimization, finding local extrema and constrained optimization; the integration of functions in one variable,					
	both by using Riemann sums and numerical integration and also using Barrow's rule, together with its applications to					
	computing arc lengths, volumes of revolution and surface areas of revolution; and finally the integration of functions of					
	several variables, together with its application to computing volume and mass of a solid body and its center of mass.					

	Study programme competences
Code	Study programme competences
A1	Capacidade para a resolución dos problemas matemáticos que poidan formularse na enxeñaría. Aptitude para aplicar os coñecementos
	sobre: álxebra lineal; xeometría; xeometría diferencial; cálculo diferencial e integral; ecuacións diferenciais e en derivadas parciais;
	métodos numéricos; algorítmica numérica; estatística e optimización.
A5	Capacidade de visión espacial e coñecemento das técnicas de representación gráfica, tanto por métodos tradicionais de xeometría
	métrica e xeometría descritiva, coma mediante as aplicacións de deseño asistido por ordenador.
B1	Que os estudantes demostren posuír e comprender coñecementos nunha área de estudo que parte da base da educación secundaria
	xeral e adoita encontrarse a un nivel que, aínda que se apoia en libros de texto avanzados, inclúe tamén algúns aspectos que implican
	coñecementos procedentes da vangarda do seu campo de estudo
B2	Que os estudantes saiban aplicar os seus coñecementos ao seu traballo ou vocación dunha forma profesional e posúan as competencias
	que adoitan demostrarse por medio da elaboración e defensa de argumentos e a resolución de problemas dentro da súa área de estudo
В3	Que os estudantes teñan a capacidade de reunir e interpretar datos relevantes (normalmente dentro da súa área de estudo) para emitirer
	xuízos que inclúan unha reflexión sobre temas relevantes de índole social, científica ou ética
B5	Que os estudantes desenvolvan aquelas habilidades de aprendizaxe necesarias para emprenderen estudos posteriores cun alto grao de
	autonomía
B7	Ser capaz de realizar unha análise crítica, avaliación e síntese de ideas novas e complexas
C1	Utilizar as ferramentas básicas das tecnoloxías da información e as comunicacións (TIC) necesarias para o exercicio da súa profesión e
	para a aprendizaxe ao longo da súa vida.
C4	Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.
C5	Asumir como profesional e cidadán a importancia da aprendizaxe ao longo da vida.

Learning outcomes		
Learning outcomes	Study programme	
	competences	

To think in a logic, critic and creative way.		B1	C4
		B2	C5
		В3	
		B5	
		В7	
Ability of thinking in an abstract way, understanding and simplifying complex problems.	A1	B1	C1
		B2	C4
		В3	C5
		B5	
		В7	
To understand the main characteristics of the formulation of a mathematical problem using the tools of the inifinitesimal	A1	B2	C4
calculus.	A5	В3	
		B5	
		В7	
Get familiar with calculus language	A1	B1	
		B5	
To be able to evaluate the difficuylty of a problem and to choose the most suitable technique among the studied ones to carry		В3	C1
on its solution. Have a good predisposition for problem solving			C4
			C5
To be able to use the bibliography and the available IT tools to find the necessary information for solving a given problem	A1	B5	C1
	A5	В7	C4
			C5
To know the underlying geometrical meaning of the studied mathematical formalism. To be able to represent sets in the plane	A1	B1	
and in the three dimensional space using different coordinates systems	A5	B2	
To obtain a basic knowledge of functions of several variables: level sets, limits, continuity	A1	B1	
	A5	B2	
		В3	
To understand the importance of partial derivatives and their relation to instantaneous variation of a magnitude (phisical,	A1	B2	
chemical, economical) and to asses their utility for the correct mathematical formulation of problems in engineering		B5	
		B7	
To understand the meaning of integrals and their usage for the formulation of several problems in engineering. To know how	A1	B2	
to apply integral for the computation of areas of plane figures, areas of a surface of revolution and solid volumes.		B5	
		B7	

	Contents	
Topic	Sub-topic	
The following topics develop the contents established in the	-Mean value theorems.	
verification report	-Introduction to vector calculus.	
	-Taylor theorem and higher order derivatives.	
	-Maximum and minimum.	
	-Implicit function and inverse function.	
	-Definite and indefinite integral.	
	-Primitive Calculus.	
	-Double and triple integrals. Applications to computing areas and volumes.	
Complex numbers	The field of complex numbers.	
	Operations: sum, produt.	
	Module and argument.	
	Polar form.	
	Operating in polar form.	

The space R^n	The vector space R^n.
	Scalar product: norms and distances.
	Classification of points and sets.
	Topology of R^n: bounded set, extrema.
	Coordinates systems: polar, cylindrical and spherical coordinates.
Functions of several variables	Scalar and vector functions.
	Level sets.
	Continuity.
	Continuity in compact sets.
Differenciation of funcions of several variables	Directional derivative.
	Partial derivatives: properties and practical computing.
	Differential map of a function.
	Gradient, relation with partial derivatives.
	Relation between the differential map and partial derivatives: jacobian matrix.
	Higher order partial derivatives.
	Introduction to vector calculus.
Applications of the differenciation of functions of several	Taylor polynomial for funcions of one and several variables.
variables	Critical points.
	Classification: Hessian matrix.
	Constrained optimization: dimensionality reduction, Lagrange multipliers method.
	Implicit function and inverse function theorems.
Integration of funcions of one variable	Riemann sums.
	Integrable functions.
	Integral Calculus Theorems: Mean Value Theorem, Fundamental Theorem and
	Barrow's rule.
	Primitive Calculus.
	Polinomial interpolation.
	Numerical integration. Compound Simpson's Rule.
	Application of integral calculus to computing arc lengths, volumes of revolution and
	surface areas of revolution.
Integration of functions of several variables	
	Double integrals.
	Triple integrals.
	Change of variable in double and triple integrals.
	Application of integral calculus to computing volume and mass of a solid body and its
	center of mass.
Appendix: The free software program, MAXIMA	Practical sessions with the free software program MAXIMA

	Planning	J		
Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
Guest lecture / keynote speech	A1 A5 B3 B5 B7 C4	30	45	75
	C5			
Problem solving	A1 A5 B1 B2 B3 B5	20	25	45
	B7 C4 C5			
Objective test	A1 A5 B1 B2 B3 B5	6	0	6
	B7 C1 C4 C5			
Workshop	A1 B1 B2 B3 C1 C4	10	10	20
Personalized attention		4	0	4

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies			
Methodologies	Description		
Guest lecture /	The course will be developed during the regular classes where the professor will explain the main concepts and results of the		
keynote speech	subject.		
Problem solving	This classes are organiized in such a way that we practice how to solve the proposed problems.		
Objective test	Three exams will be carried out during the course. The first one will be a partial exam where only some of the chapters will be considered. A final exam will be done at the end of the semester. Furthermore a computer exam will be carried out.		
Workshop	Problems are solved assisted by the computer programm Maxima.		

Personalized attention		
Methodologies	Description	
Problem solving	The contents of the subject as well as the different methodologies used require that students also work by themselves. This	
Workshop	can generate some personalized questions that they can solve by asking the teachers. In addition, the workshops will be	
	guided by the teachers of the subject.	
	The students with recognition of part-time dedication and academic exemption from attendance can use the tutorials as a	
	reference in order to follow the course and the autonomous work.	

		Assessment	
Methodologies	Competencies	Description	Qualification
Objective test	A1 A5 B1 B2 B3 B5	Written exams to assess the knowledge of the subject by the students. The subject	100
	B7 C1 C4 C5	will consists on 3 parts and the final qualification will be the addition of the	
		qualification obtained at each of these parts.	
		1) The first one will be done in the teaching period through a partial exam and will	
		probably involve the chapters 1, 2, 3 and 4. If the student passes this exam, the	
		qualification is retained until the end of the present course. This part will be	
		recoverable in the final exam (second chance).	
		2) The second (and final) exam will be carried out in the period of final exams. It will	
		involve the second part of the subject and a second chance to pass the first part.	
		The weight of both exams will be the 90% of the final qualification. In case of passing	
		any of these two parts, either in the partial or in the final exam of january, the	
		qualification is retained for the present course until the exam of second oportunity.	
		3) The third part will consist on the evaluation the competences using the program	
		MAXIMA, where the students must show their capacity for problem solving using the	
		MAXIMA program. The weight of this third part will be the 10% of the final	
		qualification. This part WILL NOT be recoverable, but the obtanined qualification will	
		be kept until second oportunity.	

Assessment comments	

	Sources of information
Basic	- Salas, L., Hille, E., Etgen, G. (2003). Calculus. vol I-II. Madrid. Reverté
	- García, A. et al. (2007). Cálculo II. Teoría y Problemas de Análisis Matemático en Varias Variables. Madrid. Clagsa
	- García Castro, F., Gutiérrez Gómez, A. (1990-1992). Cálculo Infinitesimal. I-1,2. Pirámide. Madrid
	- Marsden, J., Tromba, A. (2010). Cálculo vectorial. ADDISON WESLEY
	- Varios (1990). Problemas de Cálculo Infinitesimal. Madrid. R.A.E.C.
	- Tébar Flores, E. (1977). Cálculo Infinitesimal. I-II. Madrid. Tébar Flores
	- Spiegel, M. R. (1991). Cálculo Superior. Madrid. McGraw-Hill
	- Soler, M., Bronte, R., Marchante, L. (1992). Cálculo infinitesimal e integral. Madrid
	- Burgos Román, Juan de (2007). Cálculo infinitesimal de una variable. Madrid. McGraw-Hill
	- Coquillat, F (1997). Cálculo Integral. Madrid. Tebar Flores
	- Larson, R., Hostetler, R., Edwards, B. (2013). Calculus Brooks Cole
	- García, A. et al. (2007). Cálculo I. Teoría y Problemas de Análisis Matemático en Una Variable. Madrid. Clagsa
	- De Diego, B. (1991). Ejercicios de Análisis: Cálculo diferencial e intergral (primer curso de escuelas técnicas
	superiores y facultades de ciencias). Madrid. Deimos
	 <
Complementary	As seguintes páxinas web poden resultar de interese para o estudio da materia: www.intmath.com
	www.ies.co.jp/math/java/ http://demonstrations.wolfram.com/http://dm.udc.es/elearning/ www.intmath.com
	www.ies.co.jp/math/java/ http://193.146.36.49/mat1

Recommendations
Subjects that it is recommended to have taken before
Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus
Linear Algebra/730G03006
Statistics/730G03008
Diferential Equations/730G03011
Reliability Statistics and Numerical Methods/730G03046
Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.