

|                    |                                                       | Teaching Guide              |                 |           |
|--------------------|-------------------------------------------------------|-----------------------------|-----------------|-----------|
|                    | Identifying                                           | J Data                      |                 | 2017/18   |
| Subject (*)        | Thermodynamics                                        |                             | Code            | 730G05015 |
| Study programme    | Grao en Enxeñaría Naval e Oceán                       | ica                         | I               |           |
|                    | 1                                                     | Descriptors                 |                 |           |
| Cycle              | Period                                                | Year                        | Туре            | Credits   |
| Graduate           | 1st four-month period                                 | Second                      | Obligatoria     | 6         |
| Language           | Spanish                                               |                             | 1               |           |
| Teaching method    | Face-to-face                                          |                             |                 |           |
| Prerequisites      |                                                       |                             |                 |           |
| Department         | Ciencias da Navegación e Enxeña                       | ría MariñaEnxeñaría Naval e | e Industrial    |           |
| Coordinador        | Calvo Diaz, Jose Ramon                                | E-mai                       | jose.ramon.calv | o@udc.es  |
| Lecturers          | Calvo Diaz, Jose Ramon E-mail jose.ramon.calvo@udc.es |                             | o@udc.es        |           |
|                    | Lamas Galdo, Isabel                                   |                             | isabel.lamas.ga | do@udc.es |
| Web                | www.udc.es                                            | I.                          |                 |           |
| eneral description |                                                       |                             |                 |           |

|      | Study programme competences / results |
|------|---------------------------------------|
| Code | Study programme competences / results |
|      |                                       |

| Learning outcomes                                                                                    |       |          |      |
|------------------------------------------------------------------------------------------------------|-------|----------|------|
| Learning outcomes                                                                                    | Study | / progra | amme |
|                                                                                                      | con   | npetenc  | es/  |
|                                                                                                      |       | results  |      |
| Modelar matematicamente sistemas e procesos relacionados a la utilización y generación de la energía | A1    | B1       | C1   |
|                                                                                                      | A2    | B2       | C2   |
|                                                                                                      | A3    | B3       | C3   |
|                                                                                                      | A7    | B4       | C4   |
|                                                                                                      | A8    | B5       | C5   |
|                                                                                                      |       | B6       | C6   |
|                                                                                                      |       | B7       |      |
|                                                                                                      |       | B8       |      |
|                                                                                                      |       | B9       |      |
| Aprender a aprender                                                                                  | A1    | B1       | C1   |
|                                                                                                      | A2    | B2       | C2   |
|                                                                                                      | A3    | B3       | C3   |
|                                                                                                      | A7    | B4       | C4   |
|                                                                                                      | A8    | B5       | C5   |
|                                                                                                      |       | B6       | C6   |
|                                                                                                      |       | B7       |      |
|                                                                                                      |       | B8       |      |
|                                                                                                      |       | В9       |      |



|                                                                                |    |    | 1  |
|--------------------------------------------------------------------------------|----|----|----|
| Resolver problemas de forma efectiva.                                          | A1 | B1 | C1 |
|                                                                                | A2 | B2 | C2 |
|                                                                                | A3 | B3 | C3 |
|                                                                                | A7 | B4 | C4 |
|                                                                                | A8 | B5 | C5 |
|                                                                                |    | B6 | C6 |
|                                                                                |    | B7 |    |
|                                                                                |    | B8 |    |
|                                                                                |    | B9 |    |
| Capacidad de abstracción, comprensión y simplificación de problemas complejos. | A1 | B1 | C1 |
|                                                                                | A2 | B2 | C2 |
|                                                                                | A3 | B3 | C3 |
|                                                                                | A7 | B4 | C4 |
|                                                                                | A8 | B5 | C5 |
|                                                                                |    | B6 | C6 |
|                                                                                |    | B7 |    |
|                                                                                |    | B8 |    |
|                                                                                |    | B9 |    |

|                                                            | Contents                                                                              |
|------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Торіс                                                      | Sub-topic                                                                             |
| Os bloques ou temas seguintes desenrolan os contidos       | Introdución                                                                           |
| establecidos na ficha da Memoria de Verificación, que son: | Conservación da enerxía                                                               |
|                                                            | Propiedades das sustancias puras                                                      |
|                                                            | Análise de volume de control                                                          |
|                                                            | Segundo principio. Entropía                                                           |
|                                                            | Análise exerxética                                                                    |
| 1. Introduction to Thermodynamics                          | Applications of Thermodynamics. Continuum medium. Basic concepts: system,             |
|                                                            | surroundings, state, thermodynamical property, equilibrium. Characterization and      |
|                                                            | measurement of primitive properties: pressure, volume, temperature. Temperature       |
|                                                            | scale. Gas thermometer.                                                               |
| 2. Work, energy and the 1st law of Thermodynamics          | Review of mechanical concepts of energy. Examples: energy balance. Concept of         |
| (conservation of energy)                                   | work. Electric work. Examples. Cuasi-equilibrium processes and work. Heat iteration.  |
| (conservation of energy)                                   | Examples of heat and work. Internal energy and total energy. Conservation of energy.  |
|                                                            | Heat transfer at constant pressure and volume. Enthalpy. Internal energy and enthalpy |
|                                                            | of ideal gasses and compressible flows. Tables of ideal gasses.                       |
| 3. Propiedades de una sustancia pura                       | Ideal gas equation of state and characterization of the state using two independent   |
|                                                            | properties. Incompressible flows. Phase diagrams and phases of a pure substance.      |
|                                                            | Pure simple compressible substances. Characterization of pure simple compressible     |
|                                                            | substances. Equation of state and thermodynamical surfaces. (p, v) and (T, v)         |
|                                                            | diagrams of a pure simple compressible substance. Tables of thermodynamic             |
|                                                            | properties and reference states for water refrigerants. Examples.                     |
| 4. Conservation of energy and 1st law of Thermodynamics    | Vapor turbines, hydraulic turbines, compressors, nozzles, heat exchangers. Concept    |
|                                                            | of control volume (open system). Conservation of mass. Examples. Conservation of      |
|                                                            | energy and input/output works. Conservation of mass and energy applied to thermal     |
|                                                            | machines. Steady and transient states. Filling and emptying of tanks.                 |



| 5. 2nd law of Thermodynamics and introduction to | Concept of reversibility. Irreversible processes. Spontaneous processes. Internally    |
|--------------------------------------------------|----------------------------------------------------------------------------------------|
| thermodynamic cycles                             | reversible processes. Thermal reservoir. Power cycles and refrigerators. Efficiency    |
|                                                  | and coefficient of performance (COP). 2nd law of Thermodynamics: Kelvin-Plank and      |
|                                                  | Clausius statements. Equivalence between both statements. Carnot cycle of an ideal     |
|                                                  | gas inside a cylinder-piston system. Efficiency of a reversible power cycle.           |
|                                                  | Corollaries of the 2nd law of thermodynamics. Kelvin temperature scale. Clausius       |
|                                                  | inequality.                                                                            |
| 6. Entropy                                       | Analogy between work-pressure and heat-temperature in reversible process. Entropy      |
|                                                  | as thermodynamic property. Thermodynamic equations related to entropy. Equations       |
|                                                  | for ideal gasses. Tables of properties for pure simple compressible substances. (T, s) |
|                                                  | and (h, s) diagrams. Generation of entropy in irreversible processes. Generation and   |
|                                                  | transfer of entropy. Open system. Application to thermal machines. Efficiency in       |
|                                                  | thermal machines: compressors, pumps, turbines, nozzles. Applications.                 |

|                                | Plannin           | g                     |                    |             |
|--------------------------------|-------------------|-----------------------|--------------------|-------------|
| Methodologies / tests          | Competencies /    | Teaching hours        | Student?s personal | Total hours |
|                                | Results           | (in-person & virtual) | work hours         |             |
| ICT practicals                 | A1 A2 A3 A7 A8 B1 | 30                    | 40                 | 70          |
|                                | B2 B3 B4 B5 B6 B7 |                       |                    |             |
|                                | B8 B9 C1 C2 C3 C4 |                       |                    |             |
|                                | C5 C6             |                       |                    |             |
| Guest lecture / keynote speech | A1 A2 A3 A7 A8 B1 | 40                    | 28                 | 68          |
|                                | B2 B3 B4 B5 B6 B7 |                       |                    |             |
|                                | B8 B9 C1 C2 C3 C4 |                       |                    |             |
|                                | C5 C6             |                       |                    |             |
| _ong answer / essay questions  | A1 A2 A3 A7 A8 B1 | 9                     | 2                  | 11          |
|                                | B2 B3 B4 B5 B6 B7 |                       |                    |             |
|                                | B8 B9 C1 C2 C3 C4 |                       |                    |             |
|                                | C5 C6             |                       |                    |             |
| Personalized attention         |                   | 1                     | 0                  | 1           |

(\*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

|                                   | Methodologies                                                                                                     |  |  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|
| Methodologies                     | Description                                                                                                       |  |  |
| ICT practicals                    | Students learn the software EES (Engineering Equation Solver). Thermodynamical problems will be solved using EES. |  |  |
|                                   | There will also be lab work.                                                                                      |  |  |
| Guest lecture /<br>keynote speech | Conventional classes.                                                                                             |  |  |
| Long answer / essay questions     | Two exams                                                                                                         |  |  |

| Personalized attention    |                                                                    |  |
|---------------------------|--------------------------------------------------------------------|--|
| Methodologies Description |                                                                    |  |
| ICT practicals            | CT practicals Personal attention will be provided to the students. |  |
|                           |                                                                    |  |

|               |                | Assessment  |               |
|---------------|----------------|-------------|---------------|
| Methodologies | Competencies / | Description | Qualification |
|               | Results        |             |               |



| Long answer / essay | A1 A2 A3 A7 A8 B1 | Exam/s. In order to pass it is neccesary to obtain at least 3.5 at the final exam and 5 | 80 |
|---------------------|-------------------|-----------------------------------------------------------------------------------------|----|
| questions           | B2 B3 B4 B5 B6 B7 | final score.                                                                            |    |
|                     | B8 B9 C1 C2 C3 C4 |                                                                                         |    |
|                     | C5 C6             |                                                                                         |    |
| ICT practicals      | A1 A2 A3 A7 A8 B1 | Students may deliver some exercises and lab work                                        | 20 |
|                     | B2 B3 B4 B5 B6 B7 |                                                                                         |    |
|                     | B8 B9 C1 C2 C3 C4 |                                                                                         |    |
|                     | C5 C6             |                                                                                         |    |
| Others              |                   |                                                                                         |    |

**Assessment comments** 

|               | Sources of information                                                                                                                                                                                        |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Basic         | - J. Mª Sáiz Jabardo (2008). Introducción a la Termodinámica.                                                                                                                                                 |
|               | <ul> <li>- M. Moran y H. N Shapiro (2004). Fundamentals of Engineering Thermodynamics. John Willey &amp; amp; amp; Sons</li> <li>- Y. A. Çengel y M. A. Boles. (2006). Thermodynamics. McGraw-Hill</li> </ul> |
| Complementary |                                                                                                                                                                                                               |

| Recommendations                                          |
|----------------------------------------------------------|
| Subjects that it is recommended to have taken before     |
| CALCULUS/730G01101                                       |
| PHYSICS I/730G01102                                      |
| DIFFERENTIAL EQUATIONS/730G01110                         |
| MECHANICS/730G01118                                      |
| Subjects that are recommended to be taken simultaneously |
|                                                          |
| Subjects that continue the syllabus                      |
| FLUID MECHANICS/730G01119                                |
| Industrial Heat Transfer/730G03020                       |
| Fluid and Thermal Machines/730G03023                     |
| Other comments                                           |
|                                                          |

(\*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.