

|                         |                                                                                 | Teaching              | Guide                |                           |                                      |
|-------------------------|---------------------------------------------------------------------------------|-----------------------|----------------------|---------------------------|--------------------------------------|
|                         | Identifying Data                                                                |                       |                      | 2018/19                   |                                      |
| Subject (*)             | Stereoselective Synthesis                                                       |                       |                      | Code                      | 610509113                            |
| Study programme         | Mestrado Universitario en Investigación Química e Química Industrial (Plan 2017 |                       |                      | al (Plan 2017)            | I                                    |
|                         |                                                                                 | Descript              | tors                 |                           |                                      |
| Cycle                   | Period                                                                          | Year                  | P                    | Туре                      | Credits                              |
| Official Master's Degre | e Yearly                                                                        | First                 |                      | Optional                  | 3                                    |
| Language                | Spanish                                                                         |                       |                      |                           |                                      |
| Teaching method         | Face-to-face                                                                    |                       |                      |                           |                                      |
| Prerequisites           |                                                                                 |                       |                      |                           |                                      |
| Department              | Química                                                                         |                       |                      |                           |                                      |
| Coordinador             | Perez Sestelo, Jose                                                             |                       | E-mail               | jose.perez.sestelo@udc.es |                                      |
| Lecturers               | Perez Sestelo, Jose                                                             |                       | E-mail               | jose.perez.sestelo@udc.es |                                      |
|                         | Sarandeses Da Costa, Luis Alt                                                   | perto                 |                      | luis.sarandeses@udc.es    |                                      |
| Web                     | www.usc.es/gl/centros/quimica                                                   | /curso/master.html    |                      |                           |                                      |
| General description     | The subject covers the study o                                                  | f the generation of ( | new) stereocente     | rs starting from subs     | trates that contain stereocenters or |
|                         | proestereogenic units (C=C or                                                   | C=X bonds). There     | fore, incorporates   | fundamental concep        | ots for the training in synthesis,   |
|                         | such as the analysis of the Ste                                                 | reochemistry in che   | mical reactions, th  | ne conformational an      | alysis of organic compounds and      |
|                         | the reactivity models, including                                                | the diastereoselect   | tivity induced by th | ne substrate, the chir    | al auxiliary or a chiral-non racemic |
|                         | additive (catalyst, ligand).                                                    |                       |                      |                           |                                      |

|      | Study programme competences                                                                                                                 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Code | Study programme competences                                                                                                                 |
| A1   | Define concepts, principles, theories and specialized facts of different areas of chemistry.                                                |
| A2   | Suggest alternatives for solving complex chemical problems related to the different areas of chemistry.                                     |
| A3   | Innovate in the methods of synthesis and chemical analysis related to the different areas of chemistry                                      |
| A8   | Analyze and use the data obtained independently in complex laboratory experiments and relating them with the chemical, physical or          |
|      | biological appropriate techniques, including the use of primary literature sources                                                          |
| B1   | Possess knowledge and understanding to provide a basis or opportunity for originality in developing and / or applying ideas, often within a |
|      | research context                                                                                                                            |
| B2   | Students should apply their knowledge and ability to solve problems in new or unfamiliar environments within broader (or multidisciplinary) |
|      | contexts related to their field of study.                                                                                                   |
| B4   | Students should be able to communicate their conclusions, and the knowledge and the reasons that support them to specialists and            |
|      | non-specialists in a clear and unambiguous manner                                                                                           |
| B5   | Students must possess learning skills to allow them to continue studying in a way that will have to be largely self-directed or autonomous. |
| B7   | Identify information from scientific literature by using appropriate channels and integrate such information to raise and contextualize a   |
|      | research topic                                                                                                                              |
| B10  | Use of scientific terminology in English to explain the experimental results in the context of the chemical profession                      |

| Learning outcomes                                                                                                          |     |          |           |  |
|----------------------------------------------------------------------------------------------------------------------------|-----|----------|-----------|--|
| Learning outcomes Study p                                                                                                  |     | y progra | orogramme |  |
|                                                                                                                            | со  | mpetend  | es        |  |
| ? Use of the terms and definitions of chemical reactivity, and the proper description of stereoselective reactions         | AC1 | BC1      |           |  |
|                                                                                                                            |     | BC10     |           |  |
| ? Use of the terms and definitions of chemical reactivity, and the proper description of stereoselective reactions         | AC1 | BC10     |           |  |
| ? Capacity to visualise molecular structures using models generated by quantum mechanical computations                     | AC8 | BC2      |           |  |
| ? Ability to use and communicate, both in written and oral forms, the basic concepts of dynamic stereochemistry in Organic |     | BC4      |           |  |
| Chemistry                                                                                                                  |     |          |           |  |
| Understand the relationship between the tridimensional structure of the organic compounds and their reactivity             | AC3 | BC5      |           |  |
|                                                                                                                            |     | BC7      |           |  |



| ? Be familiar with the tridimensional representation of molecules, building the capacity to estimate their possible             | AC1 | BC1  |
|---------------------------------------------------------------------------------------------------------------------------------|-----|------|
| conformations.                                                                                                                  | AC8 | BC7  |
| Understand the structural properties and the reactivity of the prostereogenic centers in those processes that generate new      | AC3 | BC1  |
| stereogenic elements.                                                                                                           | AC8 |      |
| ? Capacity to visualise molecular structures using models generated by quantum mechanical computations.                         | AC8 | BC4  |
| ? Rationally explain the outcome of a chemical reaction in terms of the Stereochemistry.                                        | AC2 | BC10 |
|                                                                                                                                 | AC8 |      |
| ? Understand the relationship between the tridimensional structure of the organic compounds and their reactivity                |     | BC1  |
|                                                                                                                                 |     | BC5  |
| ? Understand the stereoelectronic effects and their role in chemical reactivity                                                 | AC8 | BC1  |
| ? Understand the value of the analysis of transition structures in chemical reactions, and be able to visualise those generated | AC8 |      |
| by quantum mechanical computations                                                                                              |     |      |
| ? Understand how the chirality of enantiopure compounds can be transmited to other chiral non-racemic products through          | AC8 | BC2  |
| chemical transformations                                                                                                        |     |      |
| ? Quantity the relative ration of diastereoisomers and enantiomers using phisical and chemical methods.                         | AC3 | BC1  |
|                                                                                                                                 |     | BC7  |
| ? Predict the outcome of a chemical reaction that generates novel stereocenters                                                 | AC8 | BC1  |
| ? Acquire and utilize the existing literature on synthetic processes in which stereocenters are generated.                      | AC8 | BC5  |
| ? Understand the structural properties and the reactivity of the prostereogenic centers in those processes that generate new    | AC8 | BC1  |
| stereogenic elements.                                                                                                           |     | BC7  |
| ? Rationally explain the outcome of a chemical reaction in terms of the Stereochemistry                                         |     | BC1  |
|                                                                                                                                 |     | BC7  |
| ? To know the main classes of reactions that generate stereocenters, and understand their mechanisms.                           | AC3 |      |
|                                                                                                                                 | AC8 |      |

|                                                   | Contents                                                                                 |
|---------------------------------------------------|------------------------------------------------------------------------------------------|
| Торіс                                             | Sub-topic                                                                                |
| Chapter 1. Stereochemistry in chemical reactions. | Chirality. Stereogenic units. Topicity. Diastereoselectivity and enantioselectivity. The |
| Conformational control of stereoselectivity       | ?chiral pool?: chiral auxiliaries and chiral ligands. Kinetic resolution. Conformational |
|                                                   | control of the diastereoselectivity. Stereoelectronic effects. The Curtin-Hammett        |
|                                                   | principle.                                                                               |
| Chapter 2. Additions to C=C trigonal centers      | Additions to C=C bonds. Diastereoselective epoxidations of acyclic and cyclic olefins.   |
|                                                   | Enantioselective epoxidations (Sharpless, Jacobsen, Shi). Synthetic applications of      |
|                                                   | epoxyalcohols. Diastereoselective dihydroxylations of acyclic and cyclic olefins.        |
|                                                   | Sharpless enantioselective dihydroxylation (SAD). Sharpless enantioselective             |
|                                                   | aminohydroxylation (SAA). Diastereoselective olefin hydrogenation. Enantioselective      |
|                                                   | hydrogenation                                                                            |
| Chapter 3. Additions to C=O trigonal centers.     | Addition to C=X bonds. Sterecontrol in nucleophilic additions to carbonyl groups in      |
|                                                   | acyclic and cyclic compounds. 1,2 and 1,3-Asymmetric induction models.                   |
|                                                   | Enantioselective additions to ketones. Nucleophilic additions to imines and              |
|                                                   | sulfinamides.                                                                            |
| Chapter 4. Conjugate additions to C=C-C=X systems | Conjugate additions to C=C-C=O systems. Diastereoselective conjugate additions.          |
|                                                   | Catalytic asymmetric conjugate additions. Reduction of conjugated systems.               |
|                                                   | Asymmetric epoxidation of enones.                                                        |
| Chapter 5. Additions to C=C-X systems             | Additions to C=C-OM bonds. Regio- y stereoselective synthesis of enolates.               |
|                                                   | Diastereoselective reactions of chiral enolates: alkylation, halogenation, amination and |
|                                                   | hydroxilation. Diastereoselective reactions of chiral azaenolates                        |



| Chapter 6. Reactions between trigonal centers | Reactions between trigonal centers: generation of two or more stereocenters. Aldol      |
|-----------------------------------------------|-----------------------------------------------------------------------------------------|
|                                               | reaction: control of the diastereoselectivity. The Zimmerman-Traxler model.             |
|                                               | Organocatalyzed aldol reactions. Aldol Mukaiyama reaction of latent enolates. Double    |
|                                               | diastereoselection: chiral centers on the components of the aldol reaction. Addition of |
|                                               | allyl organometals to carbonyl groups. Allylic boranes. Allylic stannanes and silanes:  |
|                                               | catalysis by chiral Lewis acids and bases. Addition of allyl organometals to imines.    |
|                                               | Diastereoselectivity in Diels-Alder cycloadditions                                      |

|                                                | Planning                    | ]                     |                           |             |
|------------------------------------------------|-----------------------------|-----------------------|---------------------------|-------------|
| Methodologies / tests                          | Competencies                | Ordinary class        | Student?s personal        | Total hours |
|                                                |                             | hours                 | work hours                |             |
| Guest lecture / keynote speech                 | A1 B1 B10                   | 12                    | 24                        | 36          |
| Seminar                                        | A8 B1                       | 5                     | 20                        | 25          |
| ICT practicals                                 | A2 A3 A8 B2 B4 B5           | 2                     | 4                         | 6           |
|                                                | B7                          |                       |                           |             |
| Objective test                                 | A1 A8 B1 B2 B10             | 3                     | 3                         | 6           |
| Personalized attention                         |                             | 2                     | 0                         | 2           |
| (*)The information in the planning table is fo | r guidence entrend dece net | taka into appount the | beteregeneity of the etur | Janta       |

(\*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

|                 | Methodologies                                                                                                                    |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------|
| Methodologies   | Description                                                                                                                      |
| Guest lecture / | It will be held 12 sessions of lectures in one group where the theoretical contents of the course will be presented with         |
| keynote speech  | illustrative examples. It will consist mainly of PowerPoint presentations. Copies of these presentations will be made available  |
|                 | to the students in advance of the course via the virtual campus. This will allow the students to study ahead the contents of the |
|                 | course and will facilitate the monitoring of explanations. Attendance to these lectures is mandatory                             |
| Seminar         | 4 sessions in small group seminars where students will present the work proposed by the professor followed by a discussion       |
|                 | section. Students will have access to the proposed exercises and papers in advance via the virtual campus of the course.         |
|                 | Attendance to these classes is mandatory                                                                                         |
| ICT practicals  | 3 sessions in small group seminars where students will have the opportunity to visualize the transition structures generated by  |
|                 | computational methods that correspond to the main reaction of the course. Attendance to these classes is mandatory.              |
| Objective test  | A written exam will be performed with the purpose to measure the knowledge adquired during the course                            |

|                 | Personalized attention                                                                                                 |
|-----------------|------------------------------------------------------------------------------------------------------------------------|
| Methodologies   | Description                                                                                                            |
| Guest lecture / | Tutoring scheduled by the professor and coordinated by the Centre. It will be 2 hours per student and will involve the |
| keynote speech  | supervision of proposed work, clarifying doubts, etc. Attendance to these classes is mandatory.                        |
| Seminar         |                                                                                                                        |
| ICT practicals  |                                                                                                                        |
| Objective test  |                                                                                                                        |

|                                |              | Assessment                                                                                                                                                                                                                                                                                                                                                                                                        |    |
|--------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Methodologies                  | Competencies | Description                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| Guest lecture / keynote speech | A1 B1 B10    | Attendance and participation                                                                                                                                                                                                                                                                                                                                                                                      | 5  |
| Seminar                        | A8 B1        | Continuous assessment (N1) will be 35% of the qualification and will consist of two components: interactive class in small groups (seminars) and interactive class in very small groups (tutorials). Seminars and tutorials include the following: resolution of exercises and practical cases (15%), realization of homework and reports (10%), oral presentations [(papers, reviews and practical cases), 10%]. | 35 |



Objective test

Assessment comments

The student's score will result of applying the following formula:

Final score =  $0.4 \times N1 + 0.6 \times N2$ 

N1 and N2 are the marks corresponding to the continuous assessment (0-10 scale) and the final exam (0-10 scale), respectively.

The repeaters will have the same system of class attendance than those who study the course for first time.

|               | Sources of information                                                                                          |
|---------------|-----------------------------------------------------------------------------------------------------------------|
| Basic         | - Corey, E. J.; Kürti, L. (2010). Enantioselective Chemical Synthesis. Methods, Logic and Practice. Direct Book |
|               | Publishing: LLC                                                                                                 |
|               | - Mulzer, J.; , Jacobsen, E. N.; Pfaltz, A.; Yamamoto, Y. (1999). Basic Principles of Asymmetric Synthesis, In  |
|               | Comprehensive Asymmetric Catalysis. Springer, Heidelberg                                                        |
|               | - Koskinen, A. M. P (2012). Asymmetric Synthesis of Natural Products. Wiley, New York                           |
| Complementary | - Procter, G. (1996). Asymmetric Synthesis. Oxford University Press, Oxford                                     |
|               | - Corey, E. J.; Kürti, L. (2010). Enantioselective Chemical Synthesis. Methods, Logic and Practice. Direct Book |
|               | Publishing: LLC                                                                                                 |
|               | - Atkinson, R. S. (1995). Stereoselective Synthesis. Chichester, UK: John Wiley & amp; amp; Sons                |
|               | - Ager, D. J.; East, M. B. (1996). Asymmetric Synthetic Methodology. CRC Press, Boca Raton, FL                  |

| Recommendations                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Subjects that it is recommended to have taken before                                                                                                  |
| /                                                                                                                                                     |
| I                                                                                                                                                     |
| Subjects that are recommended to be taken simultaneously                                                                                              |
| /                                                                                                                                                     |
| Subjects that continue the syllabus                                                                                                                   |
|                                                                                                                                                       |
| Other comments                                                                                                                                        |
| <p> The students should review the theoretical concepts introduced in each chapter using the reference manual and the material provided by</p>        |
| the professor. Those students, which have significant difficulties when working the proposed activities, should contact with the professor during the |
| tutorials, in order to analyze the problem and to receive the necessary support.                                                                      |
| The professor will analyze with those students who do not successfully pass the evaluation, and so wish, their difficulties in learning the course    |
| content. Additional material (questions, exercises, tests, etc) to strengthen the learning of the course might be also provided.                      |

</p&gt;

(\*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.