		Guia docente			
	Datos Identi	ficativos			2018/19
Asignatura (*)	Geología			Código	610G01006
Titulación	Grao en Química				
		Descriptores			
Ciclo	Periodo	Curso		Tipo	Créditos
Grado	2º cuatrimestre	Primero	Fo	ormación básica	6
Idioma	CastellanoGallegoInglés		'		'
Modalidad docente	Presencial				
Prerrequisitos					
Departamento	Física e Ciencias da Terra				
Coordinador/a	Lado Liñares, Marcos	Correo elec	trónico	marcos.lado@ud	c.es
Profesorado	Lado Liñares, Marcos	Correo elec	trónico	marcos.lado@ud	c.es
	Paz Gonzalez, Antonio			antonio.paz.gonz	alez@udc.es
	Vidal Vázquez, Eva			eva.vidal.vazque	z@udc.es
Web		,			
Descripción general	Esta materia incluye conocimiento	os básicos sobre la materia c	ristalina e	en estado sólido, s	u estructura y simetría. Una parte
	importante de la asignatura se cer	ntra en los procesos naturale	es que da	n lugar a los miner	ales y en algunas de las
	propiedades que permiten recono	cer a los mismos.			

	Competencias del título
Código	Competencias del título
A1	Utilizar la terminología química, nomenclatura, convenios y unidades.
А3	Conocer las características de los diferentes estados de la materia y las teorías empleadas para describirlos.
A6	Conocer los elementos químicos y sus compuestos, sus formas de obtención, estructura, propiedades y reactividad.
A9	Conocer los rasgos estructurales de los compuestos químicos, incluyendo la estereoquímica, así como las principales técnicas de
	investigación estructural.
A12	Relacionar las propiedades macroscópicas con las de átomos y moléculas.
A15	Reconocer y analizar nuevos problemas y planear estrategias para solucionarlos.
A16	Adquirir, evaluar y utilizar los datos e información bibliográfica y técnica relacionada con la Química.
A20	Interpretar los datos procedentes de observaciones y medidas en el laboratorio.
A23	Desarrollar una actitud crítica de perfeccionamiento en la labor experimental.
A24	Explicar de manera comprensible, fenómenos y procesos relacionados con la Química.
A25	Relacionar la Química con otras disciplinas y reconocer y valorar los procesos químicos en la vida diaria.
A27	Impartir docencia en química y materias afines en los distintos niveles educativos.
B1	Aprender a aprender.
В3	Aplicar un pensamiento crítico, lógico y creativo.
В4	Trabajar de forma autónoma con iniciativa.
B5	Trabajar de forma colaborativa.
В6	Comportarse con ética y responsabilidad social como ciudadano y como profesional.
В7	Comunicarse de manera efectiva en un entorno de trabajo.
C1	Expresarse correctamente, tanto de forma oral como escrita, en las lenguas oficiales de la comunidad autónoma.
C2	Dominar la expresión y la comprensión de forma oral y escrita de un idioma extranjero.
C3	Utilizar las herramientas básicas de las tecnologías de la información y las comunicaciones (TIC) necesarias para el ejercicio de su
	profesión y para el aprendizaje a lo largo de su vida.
C6	Valorar críticamente el conocimiento, la tecnología y la información disponible para resolver los problemas con los que deben enfrentarse
C7	Asumir como profesional y ciudadano la importancia del aprendizaje a lo largo de la vida.

Resultados de aprendizaje

Resultados de aprendizaje	Com	petencia	as del
		título	
Adquirir conocimientos sobre la reactividad de los elementos químicos para formar compuestos en la Naturaleza mediante el	A1	B1	C1
estudio de los minerales, compuestos químicos inorgánicos naturales, y su formación o mineralogénesis.	А3	В3	C2
	A6		
	A12		
Las prácticas de laboratorio incluyen el estudio de formas cristalográficas y el reconocimiento de minerales a través de un	A1	B1	C6
análisis crítico de su simetría y de las propiedades físicas, el desarrollo de visión espacial y capacidad de abstracción.	A12	B4	
	A15	B5	
	A16	В7	
	A23		
	A25		
	A27		
Abordar aspectos teóricos y prácticos de los minerales o el estado de la materia cristalina, y la relación entre orden interno y	A9		C1
propiedades macroscópicas.	A12		C2
	A16		
	A20		
	A25		
Conocer la estructura interna, sistema cristalográfico y las celdas unidad más representativas de las clases minerales.	A1	В3	C1
	А3	В7	C2
	A6		СЗ
	A16		
Relacionar las diversas propiedades físicas de los minerales (densidad, exfoliación, dureza, piezoelectricidad) y su	A6	B1	C6
composición química, tipo de enlace, estructura interna y sistema cristalino.	A12		C7
Los trabajos a realizar en grupos pequeños están encaminados a que el alumno analice un problema y lo exponga de forma	A15	B1	C1
sintética, estableciendo las interacciones de ese problema con otras disciplinas.	A16	B5	C2
	A20	В6	C7
	A24	B7	
Reconocer la materia en estado cristalino, analizar su estructura y describir su simetría interna.	A1	B1	C1
	А3	В3	C2
	A6	B4	
Familiarizarse con la nomenclatura ajustada a los convenios vigentes tanto en cristalografía como en mineralogía.	A1	B1	C1
	АЗ	B4	C2
	A16	B7	

	Contenidos
Tema	Subtema

Cristalografía y simetría de las estructuras cristalinas	1. Introducción a la cristalografía y mineralogía. Definición de cristal y mineral.
	Principales propiedades de la materia cristalina.
	Fundamentos de cristaloquímica y coordinación.
	2. Sistemas cristalinos: triclínico, monoclínico, ortorrómbico, tetragonal, hexagonal y
	cúbico.
	3. Simetría puntual: elementos de simetría, operaciones de simetría y grupos de
	simetría.
	4. Morfología y formas cristalinas: ejes cristalográficos, relaciones axiales, caras
	fundamentales e índices de Miller.
	6. Proyecciones cristalográficas: esférica y estereográfica.
	7. Simetría planar: orden bidimensional y redes planas. Grupos de simetría planar.
	8. Simetría espacial: orden tridimensional, redes de Bravais. Operaciones de simetría
	con traslación: ejes helicoidales y planos de deslizamiento. Grupos espaciales.
	Relación entre grupos puntuales y espaciales.
	9. Simetría molecular y notación de Schoenflies.
Procesos geológicos, formación de los minerales y tipos de	10. Origen de los elementos químicos.
rocas	11. Origen de los minerales.
	12. Tipos de rocas: ígneas, sedimentarias, y metamórficas.
	13. Minerales más abundantes de la corteza terrestre: silicatos.
Propiedades físicas y químicas de la materia cristalina	14. Propiedades físicas de los minerales: hábito; exfoliación, partición y fractura;
	dureza, tenacidad; peso específico; flexibilidad y elasticidad). Piezoelectricidad,
	piroelectricidad y propiedades magnéticas.
	15. Propiedades ópticas de los minerales: difracción de rayos X, luminiscencia,
	fluorescencia y fosforescencia. Color, raya y brillo; índice de refracción, cristales
	isótropos y anisótropos; luz polarizada y microscopio petrográfico; birrefringencia,
	cristales uniáxicos y biáxicos; naturaleza de los rayos X y su interacción con la
	materia cristalina, ecuación de Bragg.

	Planificaci	ón		
Metodologías / pruebas	Competéncias	Horas presenciales	Horas no presenciales / trabajo autónomo	Horas totales
Sesión magistral	A1 A3 A6 A9 A12 A20 A25 B1 B3 B6 C1 C2 C7	26	60	86
Prácticas de laboratorio	A12 A15 A16 A23 B1 B3 B4 B5 B7 C1 C2 C6	15	22.5	37.5
Aprendizaje colaborativo	A1 A9 A12 A15 A24 A25 A27 B1 B5 B7 C1 C2 C3	4	6	10
Solución de problemas	A15 A20 A23 B7 C1 C2 C7	5	7.5	12.5
Prueba mixta	A1 A3 A6 A9 A12 A15 A16 A20 A23 A25 B1 B3 B7 C1 C2	2	0	2
Actividades iniciales	B1 B3 C7	1	0	1
Atención personalizada		1	0	1

	Metodologías
Metodologías	Descripción
Sesión magistral	Clases magistrales presenciales de 50 minutos de duración destinadas a impartir los contenidos teóricos de la asignatura con
	la ayuda de material audiovisual.
Prácticas de	Clases prácticas en las que se identificarán sistemas cristalinos, elementos de simetría y grupos de simetría puntual
laboratorio	empleando estructuras modelo. Estas actividades incluirán además el reconocimiento de los minerales más representativos
	de las rocas de la zona.
Aprendizaje	Sesiones a desarrollar en grupos pequeños, en las que los estudiantes resolverán problemas relacionados con los
colaborativo	conocimientos adquiridos en las sesiones magistrales.
Solución de	Sesiones centradas en la resolución de problemas relacionados con redes cristalinas, e identificación de las combinaciones
problemas	de elementos de simetría posibles en grupos de simetría puntual.
Prueba mixta	Esta actividad tendrá como objetivo evaluar los conocimientos adquiridos por el alumno mediante una prueba escrita.
Actividades iniciales	Sesión introductoria a desarrollar el primer día de clase, en la que se explicará el programa de la asignatura, la metodología,
	los criterios de evaluación, así como un calendario de cada una de las actividades previstas.

	Atención personalizada
Metodologías	Descripción
Solución de	La atención personalizada se realizará mediante tutorías y entrevistas personales en fechas señaladas. Además, esta
problemas	atención personalizada podrá llevarse a cabo también de forma no presencial, a través del correo electrónico o del campus
Aprendizaje	virtual. Se prestará especial atención a aquellos alumnos que por sus características especiales puedan tener mayores
colaborativo	problemas de aprendizaje y a aquellos con dedicación a tiempo parcial.

		Evaluación	
Metodologías	Competéncias	Descripción	Calificación
Prueba mixta	A1 A3 A6 A9 A12 A15	Consistirá en una prueba sobre contenidos teóricos. La calificación mínima requerida	70
	A16 A20 A23 A25 B1	para superar esta prueba es de 5 puntos sobre 10	
	B3 B7 C1 C2		
Solución de	A15 A20 A23 B7 C1	La evaluación incluirá cuestionarios de problemas	3
problemas	C2 C7		
Prácticas de	A12 A15 A16 A23 B1	La evaluación incluirá cuestiones a desarrollar durante las prácticas y una prueba	20
laboratorio	B3 B4 B5 B7 C1 C2	sobre formas cristalográficas	
	C6		
Aprendizaje	A1 A9 A12 A15 A24	Se incluirá actividades de análisis de información, exposición de temas brevemente,	7
colaborativo	A25 A27 B1 B5 B7 C1	discusión de conceptos y búsqueda de soluciones. Se valorará el trabajo, la	
	C2 C3	exposición y la participación	

Observaciones evaluación

Para superar la materia es requisito imprescindible obtener una calificación mínima de 5 puntos sobre un máximo de 10 en cada una de las actividades evaluables. En caso contrario, la asignatura no será superada. En caso de que la calificación media entre todas las actividades sea mayor

que 5, pero no se haya superado alguna de las actividades evaluables, la nota que aparecerá en el acta será de 4.

Una vez superadas todas las actividades, la nota final se calculará de la siguiente forma: la prueba mixta supondrá un 70% de la nota final, y las actividades de laboratorio y grupos pequeños contribuirán con el 30% restante. La asistencia a clases y prácticas de laboratorio, y la entrega de problemas son obligatorias para ser evaluados.

Las Matrículas de Honor serán otorgadas solamente a los estudiantes que hayan sido evaluados durante el curso y hayan superado la correspondiente evaluación en cualquiera de las dos oportunidades, hasta alcanzar el máximo de Matrículas de Honor posible según la normativa de la institución. El alumno será declarado NO PRESENTADO solamente si no asiste a las actividades cuya evaluación supone más del 10% de la calificación final

En las convocatorias de junio (primera oportunidad) y julio (segunda oportunidad) se evaluará del mismo modo (porcentajes).

Los alumnos que no hayan obtenido una calificación suficiente para aprobar la asignatura y vuelvan a matricularse en posteriores cursos académicos, deberán realizar todas las actividades y procedimientos de evaluación nuevamente, ya que el proceso de enseñanza-aprendizaje, que incluye la evaluación, se refiere a un solo curso académico.

Los alumnos con reconocimiento de dedicación a tiempo parcial no tendrán la obligación de asistir a las clases teóricas ni a las actividades en grupos reducidos, aunque su asistencia a prácticas sí será obligatoria. El porcentaje de la calificación correspondiente a las actividades de grupo reducido será asimilado a la calificación de la prueba mixta tanto en la primera como en la segunda oportunidad.

	Fuentes de información		
Básica	- Borchardt-Ott, W. (2012). Crystallography: An Introduction. Springer		
	- KLEIN, C. y HURLBUT, C.S. Jr (1996). Manual de mineralogía basado en la obra de J. Dana. Reverté		
	- Phillips, F.C. (1972). Introduccion a la Cristalografía. Paraninfo		
	- Gay P. (1977). Introduccion al estado cristalino. EUNIBAR		
	Recursos na web: http://www.uned.es/cristamine/ (curso de Cristalografía y Mineralogía de la UNED)		
	http://www.ucm.es/info/crismine/TEXTOS_MONOGRÁFICOS.htm (Facultad de Ciencias Geológicas de la UCM)		
	http://161.116.85.21/crista/castella/index_es.htm (Cristalografía de Màrius Vendrell, UB) http://webmineral.com/(Sitio		
	con abundantes recursos relacionados con la cristalografía y mineralogía) http://www.iucr.org/ (Sitio da Unión		
	Internacional de cristalografía)		
Complementária	- Amorós, J.L. (1990). El cristal. Morfología, estructura y propiedades físicas. Atlas		
	- Galán, E. y Mirete, S. (1979). Introducción a los minerales de España. IGME		
	Recursos na web: Jiménez, J. y Velilla, N. Óptica mineral. Universidad de Granada (consultado en xulio de 2017).		
	http://www.ugr.es/~minpet/pages/docencia/opticamineral/paginas/default.htm Tindle, A. 2010.Andy Tindle?s Pages.		
	The Open University(consultado en xulio de 2017). http://www.open.ac.uk/earth-research/tindle/		
	http://www.uned.es/cristamine/mineral/metodos/prop_micr.htm		
	http://www.nature.com/news/specials/crystallography-1.14540		

Recomendaciones
Asignaturas que se recomienda haber cursado previamente
Asignaturas que se recomienda cursar simultáneamente
Asignaturas que continúan el temario
Otros comentarios

(*) La Guía Docente es el documento donde se visualiza la propuesta académica de la UDC. Este documento es público y no se puede modificar, salvo cosas excepcionales bajo la revisión del órgano competente de acuerdo a la normativa vigente que establece el proceso de elaboración de guías