		Teachin	g Guide			
	ldentifyir	ng Data			2018/19	
Subject (*)	HPC on the Cloud Code			614473106		
Study programme	Mestrado Universitario en Computación de Altas Prestacións / High Performance Computi				uting (Mod. Presencial 2018)	
		Desci	riptors			
Cycle	Period	Ye	ear	Туре	Credits	
Official Master's Degree	e 1st four-month period	Fi	rst	Optional	6	
Language	SpanishGalicianEnglish					
Teaching method	Face-to-face					
Prerequisites						
Department	Enxeñaría de Computadores					
Coordinador	Pardo Martínez, Xoán Carlos		E-mail	xoan.pardo@ud	dc.es	
Lecturers	Pardo Martínez, Xoán Carlos	án Carlos E-mail xoan.pardo@udc.es			dc.es	
Web	aula.cesga.es/courses/MASTERI	HPC7		'		
General description	For several years, the use of parallel computing architectures was a fundamental aspect that allowed the development of					
	important areas in multiple fields of basic and applied science. However, the high cost of traditional parallel systems limited					
	its use practically the large industries and research centers. The use of low-cost computer networks, as well as computing					
	using connected infrastructures through the Internet, has been a practical and cheap alternative to large systems for some					
	time. Thus, Cloud computing has emerged as a paradigm of distributed computing that changes the way we use					
	computers,					
	allowing a transparent, safe and cheap access to huge computational resources from anywhere in the world.					
	The main objective of this subject is to show the Cloud Computing model, and how the world of High Performance					
	Computing can use the cloud to deal with problems that, until now, were restricted to its resolution in large supercomputers.					
	You will see different examples of how it is possible to solve problems in the field of high performance computing using					
	distributed services and resources accessible in the cloud.					

	Study programme competences / results
Code	Study programme competences / results
A1	CE1 - Define, evaluate and select the most appropriate architecture and software to solve a problem
A6	CE6 - Know the available tools for the distributed systems computing
B2	CB7 - The students have to know how to apply the acquired knowledge and their capacity to solve problems in new or hardly explored
	environment inside wider contexts (or multidiscipinary) related to its area of development
B5	CB10 - The students have to possess learning skills that allows them to continue to study in a mainly self-driven or autonomous manner
В6	CG1 - Be able to search and select useful information to solve complex problems, using the bibliographic sources of the field
C1	CT1 - Use the basic technologies of the information and computing technology field required for the professional development and the
	long-life learning

Learning outcomes			
Learning outcomes	Study	y progra	amme
	con	npetenc	es/
		results	
The student will know the basics of cloud computing and service virtualization.	AJ6		
The student will know and learn to use the basic services provided by one of the main Cloud public providers.			CJ1
	AJ6		
The student will know and know how to apply the main paradigms of distributed programming used in Cloud computing.	AJ1	BJ2	CJ1
	AJ6		
The student will know and learn to use the services and resources available in the cloud to prepare and execute applications	AJ6		CJ1
in the field of high performance computing.			

The student will acquire the necessary skills for the search, selection and management of resources (bibliography, software,	BJ5	
etc.) related to Cloud computing in the field of high performance computing.	BJ6	

	Contents
Topic	Sub-topic Sub-topic
Introduction to Cloud Computing	
Cloud Computing services: virtual clusters	
Distributed processing models and frameworks	
Services for distributed processing in the cloud	

	Plannin	g		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Guest lecture / keynote speech	A1 A6	24	0	24
Laboratory practice	A1 A6 B2 B5 B6 C1	12	63	75
Supervised projects	B2 B5 B6	0	40	40
Objective test	A1 A6 B6 B2	2	0	2
Personalized attention		9	0	9
(*)The information in the planning table is for	r guidance only and does not	take into account the I	neterogeneity of the stu	dents.

	Methodologies
Methodologies	Description
Guest lecture /	In which the content of each topic is exposed. The student will have all the supporting material in advance (notes, slides used
keynote speech	by the lecturer, articles, etc.). The lecturer will promote an active attitude, asking questions that will clarify specific aspects and
	leaving open questions for the student's reflection.
Laboratory practice	The students will resolve diverse problems which allow them to practice the topics introduced in the keynote lectures.
Supervised projects	The subject of an individual assignment will be agreed with the teacher and the student will elaborate it more deeply in an
Oblination to a	autonomous way.
Objective test	At the end of the semester there will be an exam on the contents of the subject. In this exam the topics discussed in the
	theoretical and practical classes will be evaluated.

	Personalized attention
Methodologies	Description
Supervised projects	The personalized attention during the laboratory practices will serve to guide and check the students' work following to the
_aboratory practice	indications they were given.
	To carry out the supervised assignments, students will be given the necessary initial indications and bibliographic reference
	for consultation. During the elaboration, their progress will be monitored to offer additional guidelines to ensure the quality o
	the result according to predefined criteria.
	Every teacher will provide a tutorial schedule to resolve students' questions related to the topics of the subject. Students will
	be encouraged to take advantage of the tutorial sessions as a fundamental part of their learning process.

		Assessment	
Methodologies	Competencies /	Description	Qualification
	Results		

Objective test	A1 A6 B6 B2	A proba poderá conter preguntas tipo test, de resposta breve ou resolución de xercicios relacionadas coa temática tratada nas sesións maxistrais e nas prácticas de laboratorio.	40
Supervised projects	B2 B5 B6	Os traballos tutelados serán sobre algún tema a convenir entre o alumno e o profesor. Valorarase o cumprimento das especificacións, a orixinalidade, a contribución personal, a metodoloxía e rigorosidade e a presentación de resultados.	20
Laboratory practice	A1 A6 B2 B5 B6 C1	Valorarase o grao de cumprimento das especificacións, a metodoloxía e rigorosidade e a presentación de resultados.	40

Assessment comments

In order to pass the subject, a minimum score of 5 out of 10 must be obtained in the practices and supervised assignment, and 5 out of 10 in the exam. Furthermore, the total subject score must be of 5 or higher.

Notes of students that fail the subject are not kept for the following course.

Second opportunity (July) and extraordinary

The evaluation will be the same as in the first opportunity. Students will have a second deadline before the final exam to submit failed practical assignments.

Condition to be considered "Absent"

Do not present any assignment and do not take part in the exam.

Fraud

The fraud regulation of the UDC will be applied in case fraud was detected in any assignment or in the exam.

	Sources of information
Basic	- Erl T., Puttini R. and Mahmood Z. Cloud Computing, Concepts, Technology & Architecture (2013). Ed. Prentice-Hall
	White, T. Hadoop: The Definitive Guide, Storage and Analysis at Internet Scale, 4ª edición (2015). O'Reilly Media.
Complementary	- Foster, I. and Gannon, D.B. Cloud Computing for Science and Engineering (2017). The MIT Press. br />- Zaharia,
	M., Karau, H., Konwinski, A. y Patrick Wendell. Learning Spark: Lightning-Fast Big Data Analysis (2015), O'Reilly
	Media. />- Karau, H., Warren, R,. High Performance Spark: Best Practices for Scaling and Optimizing Apache
	Spark, (2017). O'Reilly Media Foster, I. and Gannon, D.B. Cloud Computing for Science and Engineering (2017). The
	MIT Press Zaharia, M., Karau, H., Konwinski, A. y Patrick Wendell. Learning Spark: Lightning-Fast Big Data Analysis
	(2015), O'Reilly Media Karau, H., Warren, R,. High Performance Spark: Best Practices for Scaling and Optimizing
	Apache Spark, (2017). O'Reilly Media.

Recommendations	
Subjects that it is recommended to have taken before	
arallel Programming/614473102	
Subjects that are recommended to be taken simultaneously	
ligh Performance Infrastructures/614473104	
Subjects that continue the syllabus	
Pata Analytics with HPC/614473108	
Other comments	
Considering the strong interrelation between the theoretical and practical contents of the subject and the progressive introduction of new conc	cepts

encouraged: videoconference, e-mail, chat, etc.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot

be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.

closely related to each other, it is advisable a weekly review to make the most of the subject. An intensive use of online communication tools will be