		Teachin	g Guide		
	Identifyii	ng Data			2018/19
Subject (*)	Advanced Parallel Programming			Code	614473107
Study programme	Mestrado Universitario en Comp	utación de Altas	Prestacións / High	Performance Compu	iting (Mod. Presencial 2018)
		Descr	riptors		
Cycle	Period	Ye	ear	Туре	Credits
Official Master's Degree	2nd four-month period	Fii	rst	Optional	6
Language	SpanishGalicianEnglish		'		,
Teaching method	Face-to-face				
Prerequisites					
Department	Enxeñaría de Computadores				
Coordinador	Fraguela Rodriguez, Basilio Berr	nardo	E-mail	basilio.fraguela	@udc.es
Lecturers	Darriba López, Diego		E-mail	diego.darriba@	udc.es
	Fraguela Rodriguez, Basilio Berr	nardo		basilio.fraguela	@udc.es
Web	aula.cesga.es			'	
General description	This subject will increase the kno	wledge on para	allel programming a	equired by the studen	ts in the previous quarter in
	subjects such as "Parallel Progra	amming" and "P	rogramming of hete	rogeneous architectu	res". The aim will be that the
	students learn to optimize paralle	el codes for big	parallel architecture	s or current supercor	nputers, using for their tests the
	resources provided by the Centro	o de Supercomp	outación de Galicia	(CESGA) and the Gro	oup of Architecture of Computers
	(GAC) of the Universidade da Co	oruña (UDC).			
	We will focus on those aspects o	f the parallel ap	plications that usua	lly penalize performa	nce, such as the communications,
	load unbalance, memory access	patterns or the	management of I/O	. We will also tackle r	multiplatform computing, which
	allows to take advantage of the ta	ask level paralle	elism by using sever	ral hardware accelera	ators, as well as hybrid computing,
	where the same application uses	several paralle	l programming para	digms in order to obt	ain good performance in clusters
	with multi-core computers and/or	hardware acce	elerators.		

	Study programme competences / results
Code	Study programme competences / results
A1	CE1 - Define, evaluate and select the most appropriate architecture and software to solve a problem
A2	CE2 - Analyze and improve the performance of a given architecture or software
A4	CE4 - Deepen in the knowledge of different programming tools and programming languages in the field of the high performance
	computing
A5	CE5 - Analyze, design and implement efficient parallel algorithms and applications
A7	CE7 - Know the emerging technologies in the supercomputing field
B1	CB6 - Possess and understand the knowledge that give a baseline or opportunity to be original in the development and/or application of
	ideas, often in a research environment
B2	CB7 - The students have to know how to apply the acquired knowledge and their capacity to solve problems in new or hardly explored
	environment inside wider contexts (or multidiscipinary) related to its area of development
B5	CB10 - The students have to possess learning skills that allows them to continue to study in a mainly self-driven or autonomous manner
B6	CG1 - Be able to search and select useful information to solve complex problems, using the bibliographic sources of the field
B9	CG4 - Be able to plan and do research, development and innovation tasks in high performance computing related environments
C1	CT1 - Use the basic technologies of the information and computing technology field required for the professional development and the
	long-life learning

Learning outcomes	
Learning outcomes	Study programme
	competences /
	results

Know advanced techniques for the optimization of parallel codes	AJ1	BJ1	
	AJ2	BJ2	
	AJ5	BJ5	
		BJ6	
		BJ9	
Control the affinity and load balance of tasks	AJ5	BJ1	CJ1
		BJ2	
		BJ5	
		BJ6	
		BJ9	
Optimize communications in distributed memory systems	AJ2	BJ1	CJ1
	AJ4	BJ2	
	AJ5	BJ5	
		BJ6	
		BJ9	
Perform parallel input/output operations	AJ4	BJ1	CJ1
	AJ5	BJ2	
		BJ5	
		BJ6	
		BJ9	
Program systems with several hardware accelerators	AJ4	BJ1	CJ1
	AJ5	BJ2	
	AJ7	BJ5	
		BJ6	
		BJ9	
Program systems with shared/distributed memory	AJ4	BJ1	CJ1
	AJ5	BJ2	
	AJ7	BJ5	
		BJ6	
		BJ9	
	l l		

	Contents
Topic	Sub-topic
1- Advanced techniques for the optimization of parallel codes	-
2- Affinity control and load balance	-
3- Optimization of communications in distributed memory	-
systems	
4- Parallel input/output	-
5- Hybrid programming for systems with several hardware	-
accelerators	
6- Hybrid programming for systems with shared/distributed	-
memory	

	Plannin	g		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Laboratory practice	A2 A5 C1	21	63	84
Supervised projects	A1 A2 A4 A5 A7 B1	0	45	45
	B2 B5 B6 B9 C1			

Mixed objective/subjective test	A2 A5 B2	2	0	2
Guest lecture / keynote speech	A1 A4 A7 B1	18	0	18
Personalized attention		1	0	1

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description
Laboratory practice	In these classes, directed tasks are carried out that allow the student to become familiar from a practical point of view with the
	contents exposed in the theoretical classes.
Supervised projects	They consist in the development of projects in which the student has to use the acquired knowledge to solve different
	problems in an autonomous way.
Mixed	An evaluation test of the subject is conducted in this activity.
objective/subjective	
test	
Guest lecture /	Theoretical classes, in which the content of each topic is exposed. The student will have all the necessary material before the
keynote speech	class and the teacher will promote an active attitude, asking questions that clarify specific aspects and leaving open questions
	for the student's reflection.

	Personalized attention
Methodologies	Description
Supervised projects	Both in the lab practices as well as during the development of the supervised projects, the students will be able to present
Laboratory practice	questions, doubts, etc. The teacher, taking care of these requests, will review concepts, solve new problems or use any activity that considers appropriate to resolve the issues raised.

		Assessment	
Methodologies	Competencies /	Description	Qualification
	Results		
Supervised projects	A1 A2 A4 A5 A7 B1	Quality of the work developed and progress of the student during its completion	70
	B2 B5 B6 B9 C1		
Mixed	A2 A5 B2	Correction and quality of the solutions proposed by the students to the questions	30
objective/subjective		raised in the test	
test			

Assessment comments

In the activities of distance evaluation students may be required to apply mechanisms that guarantee their identity as well as the authorship of the evaluable elements presented.

All the evaluation activities included in this guide conform the process of continuous evaluation of the subject. Neither the classes nor most of the evaluation activities require the student's presence, with the exception of the mixed test, of a maximum of 2 hours. This, together with the fact that all the materials of the subject are available in the education web platform of the degree, favors the work and the evaluation of the students enrolled part-time and with academic allowance of teaching exemption.

Sources of information

Basic	-Â Using Advanced MPI: Modern Features of the Message-Passing Interface. 2014. W. Gropp, T. Hoefler, R. Thakur,
	E. Lusk. MIT Press-Â Using OpenMP: The Next Step: Affinity, Accelerators, Tasking, and SIMD (Scientific and
	Engineering Computation). 2017. R. van der Pas, E. Stotzer, C. Terboven . MIT Press- OpenCL Programming
	Guide. 2011. A. Munshi, B. Gaster, T. G. Mattson, J. Fung, D. Ginsburg. Addison-Wesley/Pearson Education- Using
	Advanced MPI: Modern Features of the Message-Passing Interface. 2014. W. Gropp, T. Hoefler, R. Thakur, E. Lusk.
	MIT Press- Using OpenMP: The Next Step: Affinity, Accelerators, Tasking, and SIMD (Scientific and Engineering
	Computation). 2017. R. van der Pas, E. Stotzer, C. Terboven . MIT Press- OpenCL Programming Guide. 2011. A.
	Munshi, B. Gaster, T. G. Mattson, J. Fung, D. Ginsburg. Addison-Wesley/Pearson Education
Complementary	- Multi-core programming. 2006. S. Akhter e J. Roberts. Intel Press. - Professional CUDA C Programming. 2014. J.
	Cheng, M. Grossman, T. McKercher. Wross Multi-core programming. 2006. S. Akhter e J. Roberts. Intel Press
	Professional CUDA C Programming. 2014. J. Cheng, M. Grossman, T. McKercher. Wross.

Subjects that it is recommended to have taken before Parallel Programming/614473102 Heterogeneous Programming/614473103 Subjects that are recommended to be taken simultaneously	Subjects that it is recommended to have taken before
Heterogeneous Programming/614473103	
)2
Subjects that are recommended to be taken simultaneously	14473103
	Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus	Subjects that continue the syllabus
Master's Thesis/614473111	
Other comments	Other comments

related to each other in the theoretical part, it is advisable to dedicate a time of study or daily review. In this subject, intensive use of online communication tools will be made: videoconference, email, chat, etc.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.