		Teaching	g Guide			
	Identifyin	g Data			2018/19	
Subject (*)	Data Analytics with HPC			Code	614973108	
Study programme	Mestrado Universitario en Compu	ıtación de Altas	Prestacións / Hig	h Performance Comput	ting (Mod. Virtual 2018)	
		Descri	iptors			
Cycle	Period	Ye	ar	Туре	Credits	
Official Master's Degre	e 2nd four-month period	Fin	st	Optional	6	
Language	English		·			
Teaching method	Face-to-face					
Prerequisites						
Department	Enxeñaría de Computadores					
Coordinador	López Taboada, Guillermo		E-mail	guillermo.lopez.t	aboada@udc.es	
Lecturers	López Taboada, Guillermo		E-mail	guillermo.lopez.t	aboada@udc.es	
	Rodríguez Álvarez, Gabriel			gabriel.rodriguez	@udc.es	
Web	aula.cesga.es					
General description	The increasing amount of informa	tion available th	hrough the Interne	et calls for the efficient p	processing of large amounts of	
	data. This has led to the developr	ment of new sto	rage and process	ing techniques to deal v	with huge amounts of data,	
	namely Big Data techniques, that	naturally adapt	to distributed sys	tems.		
	The main goal of this subject is to learn suitable processing techniques for large amounts of information in the Big Data					
	world, particularly using the Hadoop ecosystem, and compare these techniques with the traditional ones employed in HPC					
	environments. This will allow the student to select the optimal tools to solve a particular problem.					

	Study programme competences
Code	Study programme competences
A1	CE1 - Define, evaluate and select the most appropriate architecture and software to solve a problem
A2	CE2 - Analyze and improve the performance of a given architecture or software
B1	CB6 - Possess and understand the knowledge that give a baseline or opportunity to be original in the development and/or application of
	ideas, often in a research environment
B2	CB7 - The students have to know how to apply the acquired knowledge and their capacity to solve problems in new or hardly explored
	environment inside wider contexts (or multidiscipinary) related to its area of development
B6	CG1 - Be able to search and select useful information to solve complex problems, using the bibliographic sources of the field
B8	CG3 - Be able to maintain and extend properly funded theoretical hypothesis to allow the introduction and exploitation of novel and
	advanced technologies in the field
B10	CG5 - Be able to work in teams, specially multidisciplinary, and do a proper time and people management and decision taking
C1	CT1 - Use the basic technologies of the information and computing technology field required for the professional development and the
	long-life learning
C4	CT4 - Value the importance of research, innovation and the technological development in the socioeconomical and cultural advance of the
	society
	long-life learning CT4 - Value the importance of research, innovation and the technological development in the socioeconomical and cultural ac

Learning outcomes			
Learning outcomes	Stud	y progra	ımme
	CO	mpeten	ces
The student will be capable of installing, configuring, and managing the basic software for massive data processing.	AJ1	BJ2	CJ1
	AJ2	BJ6	
		BJ8	
		BJ10	
The student will be capable of coding massive data processing applications using domain-specific languages.	AJ2	BJ1	CJ1
		BJ2	
		BJ10	

The student will learn about Data Engineering tools (for Intake/Storage/Processing/Visualization).	AJ1	BJ1	CJ1
	AJ2	BJ2	CJ4
The student will learn the skills to search, select and manage Big data-related resources (bibliography, software, etc.).	AJ1	BJ1	CJ1
	AJ2	BJ6	CJ4

	Contents		
Topic	Sub-topic		
Introduction to Data Engineering	1.1 HPC vs Big Data: similarities and differences in data management.		
	1.2 Hardware and Software Technologies for High Performance Data Engineering		
	1.3 Data Engineering in HPC infrastructures vs. Cloud environments		
2. Data Engineering phases	2.1 Modeling (Formats, Compression, Designing Schemas)		
	2.2 Intake (Periodicity, Transformations, Tools)		
	2.3 Storage (HDFS and NoSQL DBs, HBase, MongoDB, Cassandra)		
	2.4 Processing (Batch, Real-Time)		
	2.5 Orchestration		
	2.6 Analysis (SQL, Machine Learning, Graphs, UI)		
	2.7 Governance		
	2.8 Integration with BI (Visualization)		
3. Introduccion to Data Analytics	3.1 Exploratory Data Analytics		
	3.2 Introduction to Machine Learning		
4 Use cases	4.1 Applications to Internet of Things (Smart environments and Industry 4.0)		
	4.2 Applications to sciences and engineering		

	Planning	g		
Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
Workbook	A1 A2 B1 B6 C4	0	18	18
Laboratory practice	B1 B8 B10	0	80	80
Supervised projects	A1 A2 B1 B2 B8	0	45	45
Directed discussion	B6 C1 C4	4	3	7
Personalized attention		0		0
(*)The information in the planning table is for	guidance only and does not	take into account the	heterogeneity of the stud	dents.

	Methodologies	
Methodologies	Description	
Workbook	Planned instruction through various teaching materials.	
Laboratory practice	Problem solving and practical cases.	
Supervised projects	sed projects Semi-autonomous work on larger practical cases, under the professors' guidance.	
Directed discussion	Guidance to solve individual / group assignments, problem solving and continuous evaluation activities.	

	Personalized attention
Methodologies	Description
Laboratory practice	During laboratory practice, supervised projects, and directed discussions, students will be able to ask questions, doubts, etc.
Supervised projects	The teacher, after listening to the students feedback, will go over difficult concepts, solve new problems, or use any
Directed discussion	appropriate methodology to answer the questions.

		Assessment	
Methodologies	Competencies	Description	Qualification

Laboratory practice	B1 B8 B10	Grading the assignments submitted by students.	40
Supervised projects	A1 A2 B1 B2 B8	Grading the supervised projects submitted by students.	50
Directed discussion	B6 C1 C4	Continued, active, objectively measurable participation by the student.	10

Assessment comments

First evaluation (May):

Practical exercises: 40% Guided projects: 50% Objective participation: 10% Second evaluation (July):

Practical exercises: same grade as in the first evaluation, as there are no new activities planned for this evaluation. 40% of the final grade. Guided projects: projects not evaluated in may or deemed incomplete will be presented in july after performing the changes suggested by the professor. 50% of the final grade. Objective participation: same grade as in the first evaluation, as there are no new activities planned for this evaluation. 10% of the final grade. Not graded: Students that do not present any practical exercise or guided project will not be graded.

	Sources of information
Basic	- Tom White (2015). Hadoop: The Definitive Guide. O'Reilly (4ª ed.)
	- Wes McKinney (2017). Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. O'Reilly (2ª ed.)
Complementary	- Alex Holmes (2014). Hadoop in practice. Manning (2 ^a ed.)

Recommendations
Subjects that it is recommended to have taken before
Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus
Other comments

RecommendationsDue to the large practical component of the subject, it is advisable to be up-to-date with practices and guided projects during the semester. Observations The course makes intensive use of online communication tools: Video calls, chats, etc. In-person classes will be recorded for later perusing. An online learning management will be using for distributing notes, creating forums, etc. The software tools used in this course are open-source.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.