		Teaching Guid	de			
	Identifying	g Data			2018/19	
Subject (*)	Software Architecture			Code	614G01026	
Study programme	Grao en Enxeñaría Informática			-		
	·	Descriptors				
Cycle	Period	Year		Туре	Credits	
Graduate	2nd four-month period	Third		Optional	6	
Language	Spanish					
Teaching method	Face-to-face					
Prerequisites						
Department	Computación					
Coordinador	Castro Souto, Laura Milagros		E-mail	laura.milagros.castro.souto@udc.es		
Lecturers	Cabrero Souto, David		E-mail	david.cabrero@udc.es laura.milagros.castro.souto@udc.es		
	Castro Souto, Laura Milagros					
Web	moodle.udc.es					
General description	This subject is intended to master current Software Engineering solutions for the design of applications and systems,					
	architectural level. This involves:					
	- Knowledge of the most typical so	ftware architectures	and their prop	perties;		
	- Study of non-functional requirements and their relationship to software architecture;					
	- Development and/or study of actual systems.					

	Study programme competences / results
Code	Study programme competences / results
A25	Capacidade para desenvolver, manter e avaliar servizos e sistemas sóftware que satisfagan todos os requisitos do usuario e se
	comporten de forma fiable e eficiente, sexan accesibles de desenvolver e manter, e cumpran normas de calidade, aplicando as teorías,
	principios, métodos e prácticas da enxeñaría do sóftware.
A27	Capacidade de dar solución a problemas de integración en función das estratexias, estándares e tecnoloxías dispoñibles.
A28	Capacidade de identificar e analizar problemas, e deseñar, desenvolver, implementar, verificar e documentar solucións sóftware sobre a
	base dun coñecemento adecuado das teorías, modelos e técnicas actuais.
B1	Capacidade de resolución de problemas
B2	Traballo en equipo
В3	Capacidade de análise e síntese
B4	Capacidade para organizar e planificar
СЗ	Utilizar as ferramentas básicas das tecnoloxías da información e as comunicacións (TIC) necesarias para o exercicio da súa profesión e
	para a aprendizaxe ao longo da súa vida.
C4	Desenvolverse para o exercicio dunha cidadanía aberta, culta, crítica, comprometida, democrática e solidaria, capaz de analizar a
	realidade, diagnosticar problemas, formular e implantar solucións baseadas no coñecemento e orientadas ao ben común.
C6	Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.

Learning outcomes			
Learning outcomes	Stud	Study programme	
	cor	npetenc	ces/
		results	
Learn Software Engineering concepts and techniques.	A25		
	A28		
Understand and identify the typical problems of software architectures and their contexts.	A25	B2	C4
	A27	В3	C6
	A28		

Define and document specifications, models, and architectural components of an application, according to their requirements,	A27	B1	
so as to favour their maintenance and extensibility.		B2	
		В3	
		B4	
Proficient use of modeling languages.	A28		
Use specific tools for defining and building applications.			СЗ
Validate the architecture of a system against its requirements.	A25		
Synthesize success stories.	A25	В3	C4
			C6

	Contents
Topic	Sub-topic
Concept of software architecture	Definition of software architecture
	Structures and views
	- Notation
	UML
	IEEE Standard 1471
	- Tools
	Life and business cycle of software architecture
Reference models and architectures	Quality indicators in software architecture
	Types of architectures
	- Layered architecture
	- Repository architecture
	- Client/server architecture (service-oriented)
	- 'Pipe and filter' architecture (component-based)
	- Distributed architectures
	Master/slave architectures
	Multilayered client/server architectures
	P2P architectures
	- Other architectures
	Embedded systems
	Aspect-oriented systems
Component design and integration. Architectural patterns	Design strategies
	Architectural Patterns
	- Patterns for service access and configuration
	- Patterns for event management
	- Synchronization patterns
	- Distribution patterns
	- Concurrency patterns
	Reuse
	- Legacy and COTS systems
	- Integration styles
	File transfer
	Data sources sharing
	Remote procedure invocation
	Message passing
	System reconstruction / re-engineering

Traceability and integration testing	Integration process
	Verification and integration testing
	- Functional tests
	- Non-functional tests
	Validation and Usability

	Planning	9		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Guest lecture / keynote speech	B3	21	21	42
Document analysis	B3 B4 C3	0	7	7
Directed discussion	A28 B1 B3 C6	7.5	15	22.5
Laboratory practice	A25 A27 A28 B1 B2	15	30	45
	B4 C4 C6			
Supervised projects	A27 A28 B1 B3 B4 C3	1.5	15	16.5
	C6			
Objective test	A27 A28 B1 B3 C6	3	9	12
Personalized attention		5	0	5

	Methodologies
Methodologies	Description
Guest lecture /	Lectures in which the notions and concepts of the field are presented, using different kinds of resources such as board, slides,
keynote speech	or material provided beforehand by the teacher by means of a virtual platform (Moodle).
Document analysis	Reading and understanding task for the student, in which they will manage different resources provided or pointed to.
	Materials will be selected to promote a better understanding of lectures, to generate debate during discussion sessions, or to
	assist in carrying out practical (un)supervised work.
Directed discussion	Constructive debate, led by the teacher but participated by the whole class group, on different issues presented in lectures.
	The aim of these debates is to deepen the understanding and acquisition of theoretical concepts, and the development of
	critical and analytical skills.
Laboratory practice	Small projects designed so that the students can put in practice the theoretical knowledge as they acquire it. These projects
	wil be dimensioned to be undertaken by groups of students. The size of these gropus will be determined depending on the
	number of students enrolled in the course.
Supervised projects	Specific report or essays to be developed by students, either in groups or individually. These reports will be presented either at
	small group sessions or during personalized tutoring sessions.
Objective test	Final examination in which students must prove the knowledge they have acquired. Students are expected to show their skills
	both on a theoretical level (by answering questions similar to those posed during lectures and discussion sessions), and a
	practical level (by solving problems and exercises similar to those proposed during lab sessions and small projects).

Personalized attention				
Methodologies	Description			
Laboratory practice	The personalized attention to students involvese not only the well-known tutoring sessions, but also the following actions:			
Supervised projects				
	- Guidance and monitoring of the work done in the projects/essays/reports and other practices.			
	- Evaluation of the involvement and participation in discussion sessions.			

Assessment

Methodologies	Competencies /	Description	Qualification
	Results		
Laboratory practice	A25 A27 A28 B1 B2	Evaluation of the practices (small projects). Even though these practices are	40
	B4 C4 C6	conducted in groups, two components are considered in the assessment of a student's	
		work:	
		- Assessment of group work, which takes into account the degree of coordination and	
		collaboration among its members.	
		- Personal assessment, which evaluates the specific contribution of one student to the	
		group.	
		The aspects that will be considered to evaluate these projects are:	
		- Accuracy in achieving the objectives using the proposed techniques.	
		- Understanding of the concepts involved.	
		- Originality of the proposals.	
		- Responsibility in delivering the project results in due time, as well as proper use of	
		the established delivery means.	
Objective test	A27 A28 B1 B3 C6	Written test divided into two parts: theoretical questions, and modeling of a problem.	40
Supervised projects	A27 A28 B1 B3 B4 C3	The following aspects will be evaluated:	20
	C6		
		- Knowledge and understanding of presented contents.	
		- Knowledge and understanding of the theoretical and practical concepts of the subject	
		involved.	

Assessment comments

Students will need to show balance in their performance on the final examination and the lab practices (group projects). A balance of at least 50% of the corresponding qualification weight will be required on both aspects. Whenever the minimum is not reached in the objective test, the final mark would be that of the final test; whenever the minimum is not reached in the laboratory practice, the final mark would be 4.In the second chance evaluation, the objective test can include a laboratory evaluation for those people which do not reach 50% of the laboratory practice grade during the semester. In compliance with the academic rules at UDC that apply to part-time students, physical presence in the classroom/laboratory will not be regarded as qualification element. That is to say, students may officially apply to be dismissed from attending lectures and laboratory practices. All in all, part-time students will still need to comply with deadlines established for supervised projects and laboratory projects, since these will be announced in the subject Moodle website.

Sources of information		
Basic	- Sommerville, Ian (2011). Ingeniería de software. Addison Wesley	
	- Hohpe, Gregor (2004). Enterprise integration patterns designing, building and deploying messaging solutions.	
	Addison-Wesley	
	- Clements, Paul [et al.] (2003). Documenting software architectures : views and beyond. Addison-Wesley	
	- Bass, Len [et al.] (2003). Software architecture in practice. Addison-Wesley	
	- Fowler, Martin (2003). Patterns of enterprise application architecture. Addison-Wesley	
	- Braude, Eric J. (2001). Software engineering an object-oriented perspective. John Wiley & Dons	
	- Schmidt, Douglas [et al.] (2000). Pattern-oriented software architecture. John Wiley & Sons	
Complementary		

Recommendations	
Subjects that it is recommended to have taken before	

Software Design/614G01015

Software Process/614G01019

Internet and Distributed Systems/614G01023

Subjects that are recommended to be taken simultaneously

Requirements Engineering/614G01027

Quality Assurance/614G01028

Subjects that continue the syllabus

Development Frameworks/614G01052

Software Verification and Validation/614G01053

Development Tools/614G01054

Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.