

		Teaching Guide		
	Identifyir	ng Data		2018/19
Subject (*)	Robotics		Code	614G01098
Study programme	Grao en Enxeñaría Informática			
		Descriptors		
Cycle	Period	Year	Туре	Credits
Graduate	2nd four-month period	Fourth	Optional	6
Language	English			·
Teaching method	Face-to-face			
Prerequisites				
Department	Computación			
Coordinador	Santos Reyes, Jose	E-mai	jose.santos@u	dc.es
Lecturers	Becerra Permuy, Jose Antonio E-mail jose.antonio.becerra.permuy@udc.es		cerra.permuy@udc.es	
	Bellas Bouza, Francisco Javier		francisco.bellas	@udc.es
	Santos Reyes, Jose		jose.santos@u	dc.es
Web			1	
General description	This course is focused in the mai	n concepts of autonomous rol	potics, emphasizing the au	utomatic design of control
	strategies. The specific contents	range from the classical contr	ol approaches to the new	est based on computational
	intelligence principles, like artifici	al neural networks, evolutiona	ry algorithms and reinforc	ement learning.

	Study programme competences / results
Code	Study programme competences / results
A35	Capacidade de analizar, avaliar e seleccionar as plataformas hárdware e sóftware máis acaídas para o soporte de aplicacións
	embarcadas e de tempo real.
A43	Capacidade para adquirir, obter, formalizar e representar o coñecemento humano nunha forma computable para a resolución de
	problemas mediante un sistema informático en calquera ámbito de aplicación, particularmente os relacionados con aspectos de
	computación, percepción e actuación en ambientes ou contornos intelixentes.
B1	Capacidade de resolución de problemas
B3	Capacidade de análise e síntese
B9	Capacidade para xerar novas ideas (creatividade)
C6	Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.
C8	Valorar a importancia que ten a investigación, a innovación e o desenvolvemento tecnolóxico no avance socioeconómico e cultural da
	sociedade.

Learning outcomes			
Learning outcomes	Study programme		amme
	cor	npetend	es/
		results	
Develop an autonomous control system for its operation in a real environment	A43	B1	
		B3	
		B9	
Know the non-resolved problems in autonomous robotics			C6
			C8
Know the problems of sensing and actuation in systems that operate in the real world and real time	A35		C6
			C8
Know the problems of knowledge representation in autonomous robotics			C6
			C8
Know the problems to tackle when an autonomous robotic control system is developed	A43	B9	C6
			C8

	Contents	
Торіс	Sub-topic	
Introduction to autonomous robotics	¿What is an autonomous robot?	
	History	
	Sensors and actuators	
	Behaviors	
	Planning	
	Learning and evolution	
Elements of a robotic system	Robotic system	
	Actuators and effectors	
	Sensors	
	Control architectures	
Behavior-based robotics	Antecedents	
	Classical control architectures	
	Control architectures	
Knowledge-based robotics	Knowledge	
	Traditional deliberative robotics	
	Navigation	
Hybrid approximations	Main hybrid architectures	
	Cognitive robotics	
Evolutionary robotics	Evolutionary algorithms	
	Application to robotics	
Learning in autonomous robotics	Learning in classifier systems	
	Reinforcement learning: Q-learning	
	Combination of reinforcement and connectionist learning	

Plannir	g		
Competencies /	Teaching hours	Student?s personal	Total hours
Results	(in-person & virtual)	work hours	
A43 B1 B3 B9	21	21	42
A35 B3 B9	0	30	30
B3 C8	4	28	32
A35 C6 C8	21	21	42
	4	0	4
	Competencies / Results A43 B1 B3 B9 A35 B3 B9 B3 C8	Results(in-person & virtual)A43 B1 B3 B921A35 B3 B90B3 C84	Competencies / ResultsTeaching hours (in-person & virtual)Student?s personal work hoursA43 B1 B3 B92121A35 B3 B9030B3 C8428

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description
Laboratory practice	Lab. sessions in which the teachers will explain the robotic platform and its development software in detail. Moreover, during
	these sessions, the students must perform the design, implementation and validation of the supervised projects under the
	supervision of a teacher.
Supervised projects	Programming exercises that must be developed using the selected robotic platform. These exercises will be carried out in an
	autonomous way and their progress will be supervised by the teachers
Oral presentation	Theoretical work about a specific topic from the contents that will be orally presented and discussed with other students
Guest lecture /	Oral exposition by the teachers of the theory of the subject.
keynote speech	

	Personalized attention
Methodologies	Description

Laboratory practice	During the lab practices and tutorials, the student can consult the teacher all the doubts that appear about the realization of the
Supervised projects	formulated practical problems or about the use of the simulator or the real robot.
Oral presentation	
	Supervised projects: It is recommendable the use of a personal assistance in these activities to resolve conceptual doubts or
	procedures than can appear during the resolution of the practical problems. Also, the personal assistance will be focused on in
	the explanation, by the student, of the proposed solution.
	Oral presentation: the students' progress in their theoretical work must be supervised by the teachers, both in terms of
	contents and format.

		Assessment	
Methodologies Competencies /		Description	
	Results		
Laboratory practice	A43 B1 B3 B9	The attendance to the laboratory classes will be considered in the final mark	5
Guest lecture /	A35 C6 C8	The attendance to the keynote speeches will be considered in the final mark	5
keynote speech			
Supervised projects	A35 B3 B9	Different programming projects will be proposed along the course that must be carried	50
		out in an autonomous way by the student and that will be presented and explained to	
		the teachers afterwards. It is mandatory to pass this methodology independently in	
		order to pass the whole subject.	
Oral presentation	B3 C8	The oral presentation, the participation in the discussion and the written inform will be	40
		considered in the final mark. It is mandatory to pass this methodology independently in	
		order to pass the whole subject.	

Assessment comments

Evaluation of this course is based on independently overcoming the two main methodologies: supervised projects and oral presentation. The first one focuses on the practical demonstration of the knowledge and skills acquired to solve problems in autonomous robotics, and the second one in the completion and presentation of a paper on a specific topic within theoretical agenda. Thus, if the student does not pass the subject in the ordinary call, he / she shall repeat all activities that were not passed in the extraordinary call. As an example, if a student passed the oral presentation but failed the supervised projects, he / she shall repeat these. Students with part-time enrollment can displace the 5% of the qualification of the attendance to the other activities, both in theory and in practice, in case they can not regularly attend classes. This change in the qualification methodology shall be applied to teachers of the subject at the beginning of the course.

	Sources of information
Basic	- Bekey, A. (2005). Autonomous Robots. MIT Press
	- Mataric, Maja J. (2007). The Robotics Primer. MIT Press
	- Arkin, R.C. (1998). Behavior Based Robotics. MIT Press
	- Santos, J., Duro, R.J. (2005). Evolución Artificial y Robótica Autónoma. RA-MA
Complementary	- Thurn, S., Burgard, W., Fox, D. (2005). Probabilistic Robotics. MIT Press
	- Sutton, R.S., Burton A.G. (1998). Reinforcement Learning. MIT Press
	- Salido, J. (2009). Cibernética aplicada. Robots educativos. Ra-Ma
	- Pfeifer, R. and Scheier, C. (1999). Understanding Intelligence. MIT Press
	- Floreano, D. and Mattiussi, C. (2008). Bio-Inspired Artificial Intelligence. Tema 7. MIT Press
	- Nolfi, S., Floreano, D. (2000). Evolutionary Robotics. MIT Press
	- Santos, J. (2007). Vida Artificial. Realizaciones Computacionales. ServicioPublicaciones UDC

Recommendations
Subjects that it is recommended to have taken before

Intelligent Systems/614G01020

Knowledge Representation and Automatic Reasoning/614G01036

Intelligent Systems Development/614G01037

Machine Learning/614G01038

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Other comments

Para axudar a conseguir unha contorna inmediata sustentable e cumprir co obxectivo da acción número 5: "Docencia e investigación saudable e sustentable ambiental e social" do "Plan de Acción Green Campus Ferrol" a entrega dos traballos documentais que se realicen nesta materia: 1. Solicitarase en formato virtual e/ou soporte informático 2. Realizarase a través de Moodle, en formato dixital sen necesidade de imprimilos 3. De se realizar en papel: - Non se empregarán plásticos. - Realizaranse impresións a dobre cara. - Empregarase papel reciclado. - Evitarase a impresión de borradores.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.