
Teaching Guide

Identifying Data 2018/19

Subject (*) Software Verification and Validation Code 614G01225

Study programme Grao en Enxeñaría Informática

Descriptors

Cycle Period Year Type Credits

Graduate 2nd four-month period Adaptation Course for

Technical Engineers

Obligatory 6

Language Spanish

Teaching method Face-to-face

Prerequisites

Department Computación

Coordinador E-mail

Lecturers E-mail

Web guiadocente.udc.es/guia_docent/index.php?centre=614&ensenyament=614G01&assignatura=614G01053&

any_academic=2017_18&am

General description This subject is inteded to master the current solutions in Software Engineering for software validation and verification.

These include:

- knowledge on functional and non-functional testing techniques and tools, applicable to different levels (unit, integration,

system);

- knowledge on techniques and tools for automatic reasoning; and

- knowledge on techniques and tools for formal verification.

Study programme competences

Code Study programme competences

A28 Capacidade de identificar e analizar problemas, e deseñar, desenvolver, implementar, verificar e documentar solucións sóftware sobre a

base dun coñecemento adecuado das teorías, modelos e técnicas actuais.

B1 Capacidade de resolución de problemas

B3 Capacidade de análise e síntese

C2 Dominar a expresión e a comprensión de forma oral e escrita dun idioma estranxeiro.

C3 Utilizar as ferramentas básicas das tecnoloxías da información e as comunicacións (TIC) necesarias para o exercicio da súa profesión e

para a aprendizaxe ao longo da súa vida.

C6 Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.

C7 Asumir como profesional e cidadán a importancia da aprendizaxe ao longo da vida.

C8 Valorar a importancia que ten a investigación, a innovación e o desenvolvemento tecnolóxico no avance socioeconómico e cultural da

sociedade.

Learning outcomes

Learning outcomes Study programme

competences

Ability to identify and analyse problems, and design, develop, implement, validate and document software solutions on the

basis of a deep and broad knowledge of modern theories, models, and techniques.

A28 B1

B3

C2

C3

C6

C7

C8

Contents

Topic Sub-topic

1/3

Part I: Software Testing I.1 Test specification, design, and execution

 I1.1. Levels and types of tests

 I1.2. Properties and traceability of requirements

I.2 Test management: planning, assessment, metrics and reviews

Part II: Formal methods and automatic reasoning II.1 Introduction: natural deduction and calculus of sequences

II.2 Automatic proof using PVS

II.3 What is a theorem prover and what is it used for?

II.4 PVS specification language: types, expressions, theories, subtyping

II.5 PVS prover: tactics, recursion, ecuational reasoning

Part III: Model checking III.1 Introduction to modal temporal logic

III.2 Properties specification: deadlocks, safety, liveness, fairness

III.3 How a model checker works

III.4 Introduction to the use of a model checking tool

Planning

Methodologies / tests Competencies Ordinary class

hours

Student?s personal

work hours

Total hours

Guest lecture / keynote speech B3 C2 C7 C8 21 26.25 47.25

Laboratory practice A28 B1 B3 C2 C3 C6 14 35 49

Supervised projects A28 B1 B3 C2 C3 C6 7 7 14

Objective test B1 B3 C6 3 31.5 34.5

Personalized attention 5.25 0 5.25

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies

Methodologies Description

Guest lecture /

keynote speech

Master class where the theoretical aspects of the subject are presented.

Laboratory practice Hands-on student assigment in the lab.

Supervised projects Student assigments during reduced-group classes.

Objective test Written test.

Personalized attention

Methodologies Description

Guest lecture /

keynote speech

Laboratory practice

Supervised projects

Objective test

Questions/answers sessions about theoretical/practical aspects, student assigments, etc. during the office hours of each

teacher.

Assessment

Methodologies Competencies Description Qualification

Laboratory practice A28 B1 B3 C2 C3 C6 Hand in and presentation of student assigments, up to a maximum of 4 points in the

final score. These are not compulsory to pass.

40

Supervised projects A28 B1 B3 C2 C3 C6 Student assigments presented during reduced-group classes, up to a maximum of 2

points in the final score. These are not compulsory to pass.

20

Objective test B1 B3 C6 Written test, up to a maximum of 4 points in the final score. A minimum of 2 points is

required to pass.

40

Assessment comments

2/3

Those students who do not reach the minimum in the objective test, will be qualified with the qualification they obtain in that objective test.

In the second opportunity, the objective test may include a specific evaluation of the laboratory practice.

In compliance with the academic rules at UDC that apply to part-time students, physical presence in the classroom/laboratory will not be regarded as

qualification element. That is to say, students may officially apply to be dismissed from attending lectures and laboratory practices. All in all, part-time

students will still need to comply with deadlines established for supervised projects and laboratory projects.

Sources of information

Basic - Mordechai Ben-Ari (2012). Mathematical Logic for Computer Science. Springer

- Ron Patton (2001). Software testing. Sams

- Peter Farrell-Vinay (2008). Manage software testing. Auerbach

- Kent Beck (2002). Test Driven Development (By Example). Addison-Wesley

- Gerard J. Holzmann (2003). The SPIN model checker: primer and reference manual. Addison-Wesley

- Mordechai Ben-Ari (2001). Mathematical Logic for Computer Science. Springer

- Zohar Manna and Amir Pnueli (1991). The Temporal Logic of Reactive and Concurrent Systems. Specification.

Springer

- Zohar Manna and Amir Pnueli (1995). The Temporal Logic of Reactive and Concurrent Systems. Safety. Springer

Complementary

Recommendations

Subjects that it is recommended to have taken before

Software Design/614G01015

Concurrency and Parallelism/614G01018

Software Process/614G01019

Software Architecture/614G01221

Requirements Engineering/614G01222

Quality Assurance/614G01223

Subjects that are recommended to be taken simultaneously

Knowledge Representation and Automatic Reasoning/614G01036

Theoretical Computer Science/614G01039

Development Methodologies/614G01051

Subjects that continue the syllabus

Software Development Projects/614G01226

Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot

be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.

3/3

