|                     |                                                                                                                             | Guia do          | ocente                             |                    |                                   |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------|--------------------|-----------------------------------|--|
|                     | Datos Ident                                                                                                                 | tificativos      |                                    |                    | 2018/19                           |  |
| Asignatura (*)      | Diseño óptimo de estructuras                                                                                                |                  |                                    | Código             | 632514025                         |  |
| Titulación          | Mestrado Universitario en Enxeñería de Camiños, Canais e Portos                                                             |                  |                                    |                    | '                                 |  |
|                     |                                                                                                                             | Descrip          | otores                             |                    |                                   |  |
| Ciclo               | Periodo                                                                                                                     | Curs             | so                                 | Tipo               | Créditos                          |  |
| Máster Oficial      | 2º cuatrimestre                                                                                                             | Prime            | ero                                | Optativa 4.5       |                                   |  |
| Idioma              | Castellano                                                                                                                  | ,                | '                                  |                    | '                                 |  |
| Modalidad docente   | Presencial                                                                                                                  |                  |                                    |                    |                                   |  |
| Prerrequisitos      |                                                                                                                             |                  |                                    |                    |                                   |  |
| Departamento        | Construcións e Estruturas Arquite                                                                                           | ectónicas, Civís | e Aeronáuticas                     |                    |                                   |  |
| Coordinador/a       | Diaz Garcia, Jacobo Manuel                                                                                                  |                  | Correo electrónico                 | jacobo.diaz@udc.es |                                   |  |
| Profesorado         | Baldomir García, Aitor                                                                                                      |                  | Correo electrónico aitor.baldomir@ |                    | udc.es                            |  |
|                     | Diaz Garcia, Jacobo Manuel                                                                                                  |                  |                                    | jacobo.diaz@u      | dc.es                             |  |
| Web                 | moodle.udc.es                                                                                                               |                  |                                    |                    |                                   |  |
| Descripción general | La asignatura introduce al estudia                                                                                          | ante en el campo | o de la optimización e             | structural. Los ob | etivos generales son: definir el  |  |
|                     | planteamiento del problema del d                                                                                            | diseño óptimo de | e estructuras; enseñar             | los métodos de o   | ptimización lineal y no lineal má |  |
|                     | habituales; describir el concepto de análisis de sensibilidad y los métodos para obtenerlos; mostrar aplicaciones de diseño |                  |                                    |                    |                                   |  |
|                     | óptimo en diversas tipologías estructurales e informar de las prestaciones de los programas de computador de diseño         |                  |                                    |                    |                                   |  |
|                     | óptimo existentes actualmente.                                                                                              |                  |                                    |                    |                                   |  |

| Código | Competencias / Resultados del título                                                                                                                    |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| A1     | Capacitación científico-técnica y metodológica para la asesoría, el análisis, el diseño, el cálculo, el proyecto, la planificación, la dirección,       |
|        | la gestión, la construcción, el mantenimiento, la conservación y la explotación en los campos relacionados con la Ingeniería Civil:                     |
|        | edificación, energía, estructuras, geotecnia, hidráulica, hidrología, ingeniería cartográfica, ingeniería marítima y costera, ingeniería                |
|        | sanitaria, materiales de construcción, medio ambiente, ordenación del territorio, transportes y urbanismo, entre otros                                  |
| A2     | Capacidad para comprender los múltiples condicionamientos de carácter técnico, legal y de la propiedad que se plantean en el proyecto                   |
|        | de una obra pública, y capacidad para establecer diferentes alternativas válidas, elegir la óptima y plasmarla adecuadamente, previendo                 |
|        | los problemas de su construcción, y empleando los métodos y tecnologías más adecuadas, tanto tradicionales como innovadores, con la                     |
|        | finalidad de conseguir la mayor eficacia dentro del respeto por el medio ambiente y la protección de la seguridad y salud de los                        |
|        | trabajadores y usuarios de la obra pública                                                                                                              |
| А3     | Conocimiento, comprensión y capacidad para aplicar la legislación necesaria durante el desarrollo de la profesión de Ingeniero de                       |
|        | Caminos, Canales y Puertos                                                                                                                              |
| A4     | Conocimiento de la historia de la Ingeniería Civil y capacitación para analizar y valorar las obras públicas en particular y la construcción en general |
| A5     | Conocimiento de la profesión de Ingeniero de Caminos, Canales y Puertos y de las actividades que se pueden realizar en el ámbito de la Ingeniería Civil |
| A6     | Aplicación de las capacidades técnicas y gestoras en actividades de I+D+i dentro del ámbito de la Ingeniería Civil                                      |
| A8     | Utilización de los ordenadores para la resolución de problemas complejos de ingeniería. Utilización de métodos y modelos sofisticados de                |
|        | cálculo por ordenador así como utilización de técnicas de sistemas expertos y de inteligencia artificial en el contexto de sus aplicaciones             |
|        | en la resolución de problemas del ámbito estricto de la Ingeniería Civil                                                                                |
| A9     | Capacidad para resolver numéricamente los problemas matemáticos más frecuentes en la ingeniería, desde el planteamiento del                             |
|        | problema hasta el desarrollo de la formulación y su implementación en un programa de ordenador. En particular, capacidad para formular,                 |
|        | programar y aplicar modelos numéricos avanzados de cálculo, así como capacidad para la interpretación de los resultados obtenidos en                    |
|        | el contexto de la ingeniería civil, la mecánica computacional y/o la ingeniería matemática, entre otros                                                 |



| A11  | Capacidad para documentarse, obtener información y aplicar los conocimientos de materiales de construcción en sistemas estructurales.        |
|------|----------------------------------------------------------------------------------------------------------------------------------------------|
|      | Conocimientos de la relación entre la estructura de los materiales y las propiedades mecánicas que de ella se derivan, incluyendo la         |
|      | caracterización microestructural. Conocimiento, comprensión y capacidad para aplicar los métodos, procedimientos y equipos que               |
|      | permiten la caracterización mecánica de los materiales, tanto experimentales como analíticos. Conocimiento teórico y práctico avanzados      |
|      | de las propiedades de los materiales de construcción más utilizados en ingeniería civil. Capacidad para la aplicación de nuevos              |
|      | materiales a problemas constructivos.                                                                                                        |
| A17  | Capacidad para analizar y comprender como las características de las estructuras influyen en su comportamiento, así como conocer las         |
|      | tipologías más usuales en la Ingeniería Civil. Capacidad para utilizar métodos tradicionales y numéricos de cálculo y diseño de todo tipo    |
|      | de estructuras de diferentes materiales, sometidas a esfuerzos diversos y en situaciones de comportamientos mecánicos variados.              |
|      | Conocimiento de las diferentes tipologías de puentes metálicos, de hormigón y mixtos, su comportamiento estructural, los métodos de          |
|      | cálculo y los procedimientos constructivos empleados.                                                                                        |
| A18  | Conocimiento teórico y práctico para el análisis no lineal y dinámico estructural, con especial hincapié en el análisis sísmico, mediante la |
|      | aplicación de los métodos y programas de diseño y cálculo dinámico de estructuras por ordenador, a partir del conocimiento y                 |
|      | comprensión de las cargas dinámicas más habituales y su aplicación a las tipologías estructurales de la Ingeniería Civil.                    |
| A19  | Capacidad para definir el planteamiento del problema de diseño óptimo de estructuras, mediante la aplicación de los métodos de               |
|      | optimización lineal y no lineal más habituales en diversas tipologías estructurales, incluyendo conceptos de análisis de sensibilidad.       |
| A20  | Conocimiento de los esquemas estructurales más utilizados en Ingeniería Civil, y capacidad para analizar los antecedentes históricos y su    |
| 7120 | evolución a lo largo del tiempo. Comprensión de las interacciones entre las tipologías estructurales, los materiales de construcción         |
|      | existentes en cada etapa histórica y los medios de cálculo utilizados.                                                                       |
| A52  |                                                                                                                                              |
| A32  | Conocimiento y comprensión de los diferentes estilos artísticos, en relación con el contexto histórico, económico y social de su época       |
| D4   | desarrollando la capacidad para apreciar e incluir condicionantes estéticos en la obra civil.                                                |
| B1   | Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran          |
|      | medida autodirigido o autónomo.                                                                                                              |
| B2   | Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a           |
|      | menudo en un contexto de investigación                                                                                                       |
| B3   | Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco           |
|      | conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio                                         |
| B4   | Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información    |
|      | que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus       |
|      | conocimientos y juicios                                                                                                                      |
| B5   | Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos                      |
|      | especializados y no especializados de un modo claro y sin ambigüedades                                                                       |
| B6   | Resolver problemas de forma efectiva                                                                                                         |
| B7   | Aplicar un pensamiento crítico, lógico y creativo                                                                                            |
| B8   | Trabajar de forma autónoma con iniciativa                                                                                                    |
| B9   | Trabajar de forma colaborativa                                                                                                               |
| B11  | Comunicarse de manera efectiva en un entorno de trabajo                                                                                      |
| B12  | Expresarse correctamente, tanto de forma oral como escrita, en las lenguas oficiales de la comunidad autónoma                                |
| B16  | Valorar críticamente el conocimiento, la tecnología y la información disponible para resolver los problemas con que deben enfrentarse        |
| B18  | Valorar la importancia que tiene la investigación, la innovación y el desarrollo tecnológico en el avance socioeconómico y cultural de la    |
|      | sociedad                                                                                                                                     |
| C1   | Reciclaje continuo de conocimientos en una perspectiva generalista en el ámbito global de actuación de la ingeniería civil.                  |
| C2   | Comprender la importancia de la innovación en la profesión.                                                                                  |
| C5   | Comprensión de la necesidad de actuar de forma enriquecedora sobre el medio ambiente contribuyendo al desarrollo sostenible.                 |
| C8   | Facilidad para la integración en equipos multidisciplinares.                                                                                 |
| C9   | Capacidad para organizar y planificar.                                                                                                       |
| C12  | Capacidad de análisis, síntesis y estructuración de la información y de las ideas                                                            |
| C13  | Claridad en la formulación de hipótesis                                                                                                      |
| C14  | Capacidad de abstracción                                                                                                                     |
| C15  | Capacidad de trabajo personal, organizado y planificado                                                                                      |
| 010  | Capacitata de trabajo percentar, organizado y piarintoda                                                                                     |



| C16 | Capacidad de autoaprendizaje mediante la inquietud por buscar y adquirir nuevos conocimientos, potenciando el uso de las nuevas |
|-----|---------------------------------------------------------------------------------------------------------------------------------|
|     | tecnologías de la información                                                                                                   |
| C17 | Capacidad para enfrentarse a situaciones nuevas                                                                                 |
| C18 | Habilidades comunicativas y claridad en la exposición oral y escrita                                                            |
| C21 | Capacidad de realizar pruebas, ensayos y experimentos, analizando, sintetizando e interpretando los resultados                  |

| Resultados de aprendizaje                                                                                                   |        |                |           |
|-----------------------------------------------------------------------------------------------------------------------------|--------|----------------|-----------|
| Resultados de aprendizaje                                                                                                   |        | Competencias / |           |
|                                                                                                                             | Result | ados de        | el título |
| Capacidad para definir el planteamiento del problema de diseño óptimo de estructuras, mediante la aplicación de los métodos | AM1    | BM1            | CM1       |
| de optimización lineal y no lineal más habituales en diversas tipologías estructurales, incluyendo conceptos de análisis de | AM2    | BM2            | CM2       |
| sensibilidad e implementación en programas de ordenador.                                                                    | AM3    | ВМ3            | CM5       |
|                                                                                                                             | AM4    | BM4            | CM8       |
|                                                                                                                             | AM5    | BM5            | СМ9       |
|                                                                                                                             | AM6    | BM6            | CM12      |
|                                                                                                                             | AM8    | BM7            | CM13      |
|                                                                                                                             | AM9    | BM8            | CM14      |
|                                                                                                                             | AM11   | ВМ9            | CM15      |
|                                                                                                                             | AM17   | BM11           | CM16      |
|                                                                                                                             | AM18   | BM12           | CM17      |
|                                                                                                                             | AM19   | BM16           | CM18      |
|                                                                                                                             | AM20   | BM18           | CM21      |
|                                                                                                                             | AM52   |                |           |

| Contenidos                      |                                                                                     |  |  |  |  |
|---------------------------------|-------------------------------------------------------------------------------------|--|--|--|--|
| Tema                            | Subtema                                                                             |  |  |  |  |
| Planteamiento del diseño óptimo | El diseño en la ingeniería.                                                         |  |  |  |  |
|                                 | Métodos convencionales.                                                             |  |  |  |  |
|                                 | Conceptos asociados al diseño: Factores fijos y variables. Condiciones. Calidad del |  |  |  |  |
|                                 | diseño.                                                                             |  |  |  |  |
|                                 | Formulación del diseño óptimo: Variables de diseño. Restricciones. Funciones        |  |  |  |  |
|                                 | objetivo.                                                                           |  |  |  |  |
|                                 | Evolución histórica del diseño óptimo.                                              |  |  |  |  |
|                                 | Aplicación de las condiciones de Kuhn-Tucker.                                       |  |  |  |  |
|                                 | Optimización de elementos simples.                                                  |  |  |  |  |
| Métodos de programación lineal  | Método simplex: Formulación primal. Formulación dual.                               |  |  |  |  |
|                                 | Aplicación a la optimización de estructuras de nudos rígidos en régimen plástico.   |  |  |  |  |
|                                 | Optimización de vigas de hormigón pretensado.                                       |  |  |  |  |
| Optimización incondicionada     | Extremos de funciones de una variable.                                              |  |  |  |  |
|                                 | Mínimos de funciones de n variables.                                                |  |  |  |  |
|                                 | Métodos de orden cero: Direcciones conjugadas.                                      |  |  |  |  |
|                                 | Métodos de gradiente.                                                               |  |  |  |  |
|                                 | Métodos de Newton.                                                                  |  |  |  |  |
| Optimización condicionada       | Métodos de función penalty.                                                         |  |  |  |  |
|                                 | Método de las direcciones eficientes.                                               |  |  |  |  |
|                                 | Métodos basados en aproximaciones: Secuencias de problemas lineales; secuencias     |  |  |  |  |
|                                 | de problemas cuadráticos.                                                           |  |  |  |  |

| Análisis de sensibilidad                             | Concepto del análisis de sensibilidad: Orden y tipos.                               |
|------------------------------------------------------|-------------------------------------------------------------------------------------|
|                                                      | Métodos directos.                                                                   |
|                                                      | Métodos basados en la variable adjunta.                                             |
|                                                      | Análisis de sensibilidad de tensiones.                                              |
|                                                      | Análisis de sensibilidad de movimientos.                                            |
|                                                      | Aplicación a estructuras de nudos articulados.                                      |
|                                                      | Aplicación a estructuras de nudos rígidos.                                          |
| Códigos de optimización y aplicaciones estructurales | Aplicaciones estructurales del diseño óptimo de estructuras. Descripción del código |
|                                                      | de optimización MSC/Nastran.                                                        |

|                           | Planificaci        | ón              |               |               |
|---------------------------|--------------------|-----------------|---------------|---------------|
| Metodologías / pruebas    | Competencias /     | Horas lectivas  | Horas trabajo | Horas totales |
|                           | Resultados         | (presenciales y | autónomo      |               |
|                           |                    | virtuales)      |               |               |
| Prácticas a través de TIC | A1 A7 A8 A9 A19 B1 | 10              | 7.5           | 17.5          |
|                           | B2 B3 B5 B6 B7 B8  |                 |               |               |
|                           | B9 B11 B12 B19 B13 |                 |               |               |
|                           | B18 C1 C2 C3 C6 C8 |                 |               |               |
|                           | C9 C11 C12 C13 C14 |                 |               |               |
|                           | C15 C16 C17 C18    |                 |               |               |
|                           | C21                |                 |               |               |
| Sesión magistral          | A1 A2 A3 A4 A5 A6  | 15              | 30            | 45            |
|                           | A8 A9 A11 A17 A18  |                 |               |               |
|                           | A19 A20 A52 B1 B2  |                 |               |               |
|                           | B3 B4 B5 B6 B7 B8  |                 |               |               |
|                           | B9 B11 B12 B16 B18 |                 |               |               |
|                           | C1 C2 C5 C8 C9 C12 |                 |               |               |
|                           | C13 C14 C15 C16    |                 |               |               |
|                           | C17 C18 C21        |                 |               |               |
| Frabajos tutelados        | A1 A7 A8 A9 A19 B1 | 0               | 15            | 15            |
|                           | B2 B3 B5 B6 B7 B8  |                 |               |               |
|                           | B9 B11 B12 B19 B13 |                 |               |               |
|                           | B18 C1 C2 C3 C6 C8 |                 |               |               |
|                           | C9 C11 C12 C13 C14 |                 |               |               |
|                           | C15 C16 C17 C18    |                 |               |               |
|                           | C21                |                 |               |               |
| Prueba objetiva           | A1 A7 A8 A9 A19 B1 | 2               | 0             | 2             |
|                           | B2 B3 B5 B6 B7 B8  |                 |               |               |
|                           | B9 B11 B12 B19 B13 |                 |               |               |
|                           | B18 C1 C2 C3 C6 C8 |                 |               |               |
|                           | C9 C11 C12 C13 C14 |                 |               |               |
|                           | C15 C16 C17 C18    |                 |               |               |
|                           | C21                |                 |               |               |
| Solución de problemas     | A1 A7 A8 A9 A19 B1 | 15              | 15            | 30            |
|                           | B2 B3 B5 B6 B7 B8  |                 |               |               |
|                           | B9 B11 B12 B19 B13 |                 |               |               |
|                           | B18 C1 C2 C3 C6 C8 |                 |               |               |
|                           | C9 C11 C12 C13 C14 |                 |               |               |
|                           | C15 C16 C17 C18    |                 |               |               |
|                           | C21                |                 |               |               |



| Atención personalizada                                                                                                            |  | 3 | 0 | 3 |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|--|---|---|---|--|--|
| (*)Los datos que aparecen en la tabla de planificación són de carácter orientativo, considerando la heterogeneidad de los alumnos |  |   |   |   |  |  |

|                       | Metodologías                                                                                                                 |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------|
| Metodologías          | Descripción                                                                                                                  |
| Prácticas a través de | Los estudiantes resuelven problemas de optimización estructural en el Laboratorio de Cálculo de Estructuras con ayuda de     |
| TIC                   | códigos informáticos.                                                                                                        |
| Sesión magistral      | El profesor desarrolla los conceptos teóricos de cada uno de los temas de la asignatura mediante lecciones magistrales       |
|                       | apoyadas por documentación complementaria                                                                                    |
| Trabajos tutelados    | Los estudiantes entregan un trabajo, propuesto por el profesor, en el que aplican y demuestran los conocimientos sobre       |
|                       | códigos informáticos de optimización estructural.                                                                            |
| Prueba objetiva       | Examen escrito en el que los estudiantes deben demostrar que han adquirido correctamente los conocimientos de la             |
|                       | asignatura. El examen consiste en cuestiones teóricas y prácticas sobre el temario de la asignatura.                         |
| Solución de           | Se imparten sesiones en las que se proponen problemas prácticos que desarrollan los conceptos teóricos de cada tema y que    |
| problemas             | son resueltos por el profesor. Los estudiantes deben entregar las soluciones de los ejercicios adicionales propuestos por el |
|                       | profesor.                                                                                                                    |

| Atención personalizada                                                                                                                               |             |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|
| Metodologías                                                                                                                                         | Descripción |  |  |  |  |
| Prácticas a través de Students receive individual attention to solve the issues raised during the practical sessions in the Laboratory of Structural |             |  |  |  |  |
| TIC                                                                                                                                                  | Analysis.   |  |  |  |  |
|                                                                                                                                                      |             |  |  |  |  |
|                                                                                                                                                      |             |  |  |  |  |

|                    |                    | Evaluación                                                                             |     |
|--------------------|--------------------|----------------------------------------------------------------------------------------|-----|
| Metodologías       | Competencias /     | cias / Descripción                                                                     |     |
|                    | Resultados         |                                                                                        |     |
| Trabajos tutelados | A1 A7 A8 A9 A19 B1 | Los estudiantes entregan un trabajo de curso, propuesto por el profesor, en el que     | 50  |
|                    | B2 B3 B5 B6 B7 B8  | aplican y demuestran los conocimientos sobre códigos informáticos de optimización      |     |
|                    | B9 B11 B12 B19 B13 | estructural. La entrega de este trabajo es indispensable para superar la asignatura,   |     |
|                    | B18 C1 C2 C3 C6 C8 | tanto mediante evaluación continua como mediante prueba objetiva.                      |     |
|                    | C9 C11 C12 C13 C14 |                                                                                        |     |
|                    | C15 C16 C17 C18    |                                                                                        |     |
|                    | C21                |                                                                                        |     |
| Solución de        | A1 A7 A8 A9 A19 B1 | Los estudiantes deben entregar las soluciones de los ejercicios propuestos por los     | 50  |
| problemas          | B2 B3 B5 B6 B7 B8  | profesores para superar la evaluación continua.                                        |     |
|                    | B9 B11 B12 B19 B13 |                                                                                        |     |
|                    | B18 C1 C2 C3 C6 C8 |                                                                                        |     |
|                    | C9 C11 C12 C13 C14 |                                                                                        |     |
|                    | C15 C16 C17 C18    |                                                                                        |     |
|                    | C21                |                                                                                        |     |
| Prueba objetiva    | A1 A7 A8 A9 A19 B1 | Examen escrito en el que los estudiantes deben demostrar que han adquirido             | 100 |
|                    | B2 B3 B5 B6 B7 B8  | correctamente los conocimientos de la asignatura. El examen consiste en cuestiones     |     |
|                    | B9 B11 B12 B19 B13 | teóricas y prácticas sobre el temario de la asignatura. Los estudiantes que superen la |     |
|                    | B18 C1 C2 C3 C6 C8 | evaluación continua no deben realizarlo.                                               |     |
|                    | C9 C11 C12 C13 C14 |                                                                                        |     |
|                    | C15 C16 C17 C18    |                                                                                        |     |
|                    | C21                |                                                                                        |     |

Observaciones evaluación



La asignatura puede ser superada de dos modos: mediante evaluación continua o mediante prueba objetiva.

Evaluación continuaLos estudiantes que opten por la evaluación continua deben asistir regularmente a clase y entregar la solución de los problemas prácticos y el trabajo de curso en los plazos fijados por los profesores. La calificación final será la media ponderada al 50% con la calificación de los ejercicios propuestos y con la calificación del trabajo de curso.

Prueba objetivaLos estudiantes que no superen la evaluación continua, deberán realizar una prueba objetiva y además entregar el trabajo de curso antes de la fecha oficial establecida para la realización de la prueba objetiva. La calificación final será la media ponderada al 80% con la calificación de la prueba objetiva y al 20% con la calificación del trabajo de curso.

| Fuentes de información |                                                                                                                      |
|------------------------|----------------------------------------------------------------------------------------------------------------------|
| Básica                 | - Hernández Ibáñez, S. (1990). Métodos de diseño óptimo de estructuras. Madrid: Colegio de Ingenieros de Caminos,    |
|                        | Canales y Puertos                                                                                                    |
|                        | - Hernández Ibáñez, S. y Fontán Pérez, A. (2002). Aplicaciones industriales del diseño óptimo. ETSICCP.              |
|                        | Universidade da Coruña                                                                                               |
|                        | - Arora, J. S. (2011). Introduction to optimum design. Oxford: Academic Press                                        |
|                        | - Belegundu, A. y Chandrupatla, T. R. (2011). Optimization concepts and applications in engineering. New York:       |
|                        | Cambridge Unviersity Press                                                                                           |
|                        | - Vanderplaats, G. N. (2007). Multidiscipline design optimization. Monterey: Vanderplaats Research & Company (2007). |
|                        | Development                                                                                                          |
|                        | - Haftka, R. T. y Gürdal, Z. (1991). Elements of structural optimization. Dordrecht: Kluwer Academic Publishers      |
| Complementária         |                                                                                                                      |

| Recomendaciones                                         |
|---------------------------------------------------------|
| Asignaturas que se recomienda haber cursado previamente |
|                                                         |
| Asignaturas que se recomienda cursar simultáneamente    |
|                                                         |
| Asignaturas que continúan el temario                    |
|                                                         |
| Otros comentarios                                       |
|                                                         |

(\*) La Guía Docente es el documento donde se visualiza la propuesta académica de la UDC. Este documento es público y no se puede modificar, salvo cosas excepcionales bajo la revisión del órgano competente de acuerdo a la normativa vigente que establece el proceso de elaboración de guías