

	Teach	ing Guide		
	Identifying Data			2019/20
Subject (*)	Selection and validation of Analytical methodo	logies	Code	610509101
Study programme	Mestrado Universitario en Investigación Quími	ca e Química Industri	al (Plan 2017)	
	Des	criptors		
Cycle	Period	Year	Туре	Credits
Official Master's Degre	e Yearly	First	Obligatory	3
Language	Spanish			
Teaching method	Face-to-face			
Prerequisites				
Department	Química			
Coordinador	Muniategui Lorenzo, Soledad	E-mail	soledad.muniat	egui@udc.es
Lecturers	Carlosena Zubieta, Alatzne	E-mail	alatzne.carlose	na@udc.es
	Muniategui Lorenzo, Soledad	oledad soledad.muniategui@udc.es		egui@udc.es
Web	http://www.usc.es/gl/centros/quimica/curso/ma	ister.html		
General description	This subject aims to provide students with the	knowledge of the bas	ic principles for good	practice in analytical
	measurement, emphasizing the importance of	using validated metho	ods. Provide guidanc	e on the evaluation of analytical
	methods in their suitability for use with differen	t validation guidelines	, general or specific.	Introduce students to innovative
	analysis techniques, interest in the industrial fi	eld and research. Dev	velop in students the	ability to solve real problems of
	practical cases of clinical analysis, environmer	ntal interest, among of	hers.	

	Study programme competences / results
Code	Study programme competences / results
A1	Define concepts, principles, theories and specialized facts of different areas of chemistry.
A3	Innovate in the methods of synthesis and chemical analysis related to the different areas of chemistry
A5	Properly assess risks and environmental and socioeconomic impacts associated with special chemicals
A6	Design processes involving the treatment or disposal of hazardous chemicals
A7	Operate with advanced instrumentation for chemical analysis and structural determination.
A8	Analyze and use the data obtained independently in complex laboratory experiments and relating them with the chemical, physical or
	biological appropriate techniques, including the use of primary literature sources
A9	Promote innovation and entrepreneurship in the chemical industry and in research.
B2	Students should apply their knowledge and ability to solve problems in new or unfamiliar environments within broader (or multidisciplinary)
	contexts related to their field of study.
B3	Students should be able to integrate knowledge and handle complexity, and formulate judgments based on information that was
	incomplete or limited, include reflecting on social and ethical responsibilities linked to the application of their knowledge and judgments.
B4	Students should be able to communicate their conclusions, and the knowledge and the reasons that support them to specialists and
	non-specialists in a clear and unambiguous manner
B5	Students must possess learning skills to allow them to continue studying in a way that will have to be largely self-directed or autonomous.
B10	Use of scientific terminology in English to explain the experimental results in the context of the chemical profession
B11	Apply correctly the new technologies to gather and organize the information to solve problems in the professional activity.
B12	Being able to work in a team and adapt to multidisciplinary teams.
C1	CT1 - Elaborar, escribir e defender publicamente informes de carácter científico e técnico
C2	CT2 - Traballar en equipo e adaptarse a equipos multidisciplinares.
C3	CT3 - Traballar con autonomía e eficiencia na práctica diaria da investigación ou da actividade profesional.
C4	CT4 - Apreciar o valor da calidade e mellora continua, actuando con rigor, responsabilidade e ética profesional.

Learning outcomes	
Learning outcomes	Study programme
	competences /
	results

To know how to select and implement best practice measurement and analytical experimentation, ensuring the quality of the	AC8	BC3	CC1
chemical data through the validation of the analytical methodologies.	AC9	BC4	CC4
		BC5	
To know advanced techniques of sampling, sample treatment and instrumental determination in environmental analysis	AC5		CC1
	AC6		
	AC7		
	AC9		
To know how to analyze and solve chemical problems related to the environment based on analytical criteria. Planning and	AC1	BC2	CC2
implementation of the stages of an analytical process	AC3	BC10	CC3
		BC11	
		BC12	

	Contents
Торіс	Sub-topic
Item 1. Selection of analytical methodologies	
Item 2. Implementation, validation and verification of chemical	
analysis methods.	
Item 3. Innovative Technologies in Analytical Chemistry.	
Case Studies	

	Plannin	g		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Seminar	A9 B2 B11 C2 C4	3	9	12
Supervised projects	A5 B3 B4 B5 B10 B12	2	18	20
	C1 C3			
Mixed objective/subjective test	A1 A8 B2 C1	3	0	3
Laboratory practice	A3 A5 A6 A7 A8 A9	5	5	10
Guest lecture / keynote speech	A9 B3 B12 C4	10	20	30
Personalized attention		0	0	0

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description
Seminar	Seminars clarify and extend some aspects covered in lectures and laboratory practice, especially related to the practical
	application of the studied methodologies. Students participate and discuss possible strategies to solve industrial and
	environmental problems under the teacher guidance
Supervised projects	Supervised projects will include finding information from different sources, presentation and oral defense of a topic proposed
	by the teacher related to any environmental, industrial, etc problem
Mixed	A final exam will be done to assess the degree of learning both the theoretical and practica
objective/subjective	
test	
Laboratory practice	In the lab sessions the student will perform the application of theoretical concepts studied throughout the course and will also it
	will contact advanced technical and analytical instrumentation.
Guest lecture /	Teacher explains the fundamental concepts and the most important contents of each subject. It also proposes different issues
keynote speech	that should be discussed and resolved by the students, encouraging participation

	Personalized attention
Methodologies	Description

Seminar	Throughout the course the teacher resolves any doubts on the subject that the student needs.
Supervised projects	In seminars and supervised projects, the teacher supervises the methodology used to solve the proposed problems, solves
	the student's doubts and guides the learning process.
	Students with recognition of part-time dedication and academic assistance waiver regime will be treated in tutoring (by appointment)

		Assessment	
Methodologies	Competencies /	Description	Qualification
	Results		
Seminar	A9 B2 B11 C2 C4	Work and active participation of students will be evaluated	5
Supervised projects	A5 B3 B4 B5 B10 B12	The academic activities will be evaluated by performing and oral defense of the	30
	C1 C3	supervised activities	
Mixed	A1 A8 B2 C1	Learning degree for the course contents and skill acquisition by students will be	60
objective/subjective		assessed through an objective test. It will consist of theoretical questions and applied	
test		problems	
Laboratory practice	A3 A5 A6 A7 A8 A9	Practice work and active participation of students will be evaluated on a continuing	5
		process.	

Assessment comments

To pass the subject, students must regulary attendance at all evaluable activities and to attain a minimum cualification in each of them. The student will obtain the qualification of No Presented they do not perform the mentored work and not present the final exam. The scores for the activities will remain in the July, except for the mixed test which shall be repeated in case of being suspended. The

following academic courses, the teaching-learning process, including

all evaluable activities, return to start a new course.For

students with a part-time dedication and academic assistance waiver regime, in the event that they can not perform all activities or continuous assessment test, the teacher will

take appropriate action to avoid prejudicing their qualification.

	Sources of information
Basic	- R. Kellner, J. M. Mermet, M. Otto, M. Valcarcel y H. M. Widmer, (2004). Básica. Eds. ? Analytical Chemistry: A
	Modern Approach to Analytical Science. Wiley-VCH
	- Eurolab España. P.P. Morillas y colaboradores (2016). Guía Eurachem: La adecuación al uso de los métodos
	analíticos ? Una Guía de laboratorio para la validación de métodos y temas relacionados . Disponible en
	www.eurachem.org
	- M. Valcárcel (1999). Principios de Química Analítica. Springer, Barcelona
Complementary	- Ramis Ramos G., García Álvarez-Coque M.C (2001). Quimiometría. Síntesis. Madrid.
	- Compañó Beltrán R., Rios Castro A (2002). Garantía de calidad en los laboratorios analíticos. Síntesis. Madrid.
	- Valcárcel M., Cárdenas M.S (2000.). Automatización y Miniat urización en Química Analítica. Ed. Springer.
	- I. Rodríguez, E. Trullos, X. Rius (2003). Validación de Métodos Analíticos Cualitativos. Técnicas de Laboratorio,
	281 (2003) 328-335. http://www.quimica.urv.es/quimio
	- Kruve A. et al. (2015). Tutorial review on validation of liquid chromato graphy?mass spectrometry methods: Part I.
	Analytica Chimica Act a 870 (2015) 8?28
	- Kruve A. et al. (). Tutorial review on validation of liquid chromato graphy?mass spectrometry methods: Part II.
	Analytica Chimica Act a 870 (2015) 29?44

Recommendations
Subjects that it is recommended to have taken before

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Students

Other comments

must review the theoretical concepts introduced in different topics

using the recommended bibliography. Those

students who encounter significant difficulties in working the

proposed activities must go in the tutorial hours of teachers, in order

to be able to analyze the problem and try to solve those difficulties.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.