

		Teaching	g Guide		
	Identifyin	g Data			2019/20
Subject (*)	Advanced Physical Chemistry			Code	610G01020
Study programme	Grao en Química			1	
		Descri	ptors		
Cycle	Period	Ye	ar	Туре	Credits
Graduate	1st four-month period	Fou	rth	Obligatory	6
Language	SpanishEnglish				
Teaching method	Face-to-face				
Prerequisites					
Department	Química				
Coordinador	Iglesias Martinez, Emilia E-mail emilia.iglesias@udc.e		udc.es		
Lecturers	Brandariz Lendoiro, Maria Isabel		E-mail	i.brandariz@udc.es	
	Iglesias Martinez, Emilia			emilia.iglesias@udc.es	
Web	campusvirtual.udc.es			I	
General description	KEY WORDS: ionic interactions a	ind molecular tr	ansport phenomen	a. Rate equation and	reaction mechanisms. Chemical
		cal Chemistry a erstand the con ssible the chara	ddresses the pheno figuration of macro acterization of macr	omenological study of molecules of chemical omolecules and are c	the interactions between ions and I and biological interest. Transport entral to the application of certain
	analyzing the factors that modify reaction rate in order to determine the rate equation, and finally to propose a reaction mechanism at the molecular level to interpret the observed macroscopic reaction.			d finally to propose a reaction	

	Study programme competences / results
Code	Study programme competences / results
A1	Ability to use chemistry terminology, nomenclature, conventions and units
A3	Knowledge of characteristics of the different states of matter and theories used to describe them
A4	Knowledge of main types of chemical reaction and characteristics of each
A10	Knowledge of chemical kinetics, catalysis and reaction mechanisms
A14	Ability to demonstrate knowledge and understanding of concepts, principles and theories in chemistry
A19	Ability to follow standard procedures and handle scientific equipment
A20	Ability to interpret data resulting from laboratory observation and measurement
A22	Ability to plan, design and develop projects and experiments
A23	Critical standards of excellence in experimental technique and analysis
A25	Ability to recognise and analyse link between chemistry and other disciplines, and presence of chemical processes in everyday life
A27	Ability to teach chemistry and related subjects at different academic levels
B1	Learning to learn
B3	Application of logical, critical, creative thinking
B4	Working independently on own initiative
C3	Ability to use basic information and communications technology (ICT) tools for professional purposes and learning throughout life
C6	Ability to assess critically the knowledge, technology and information available for problem solving

Learning outcomes	
Learning outcomes	Study programme
	competences /
	results

Methodology:	A3	B1	C3
· Be able to plan, design, and perform experiments related to the transport of matter and charge transport.	A4	B3	
· Be able to propose and design a kinetic study of a chemical reaction.	A10	B4	
Simple software application to the quantitative analysis of kinetic data.	A19		
Interpretation of kinetic results on the basis of reaction mechanisms.	A20		
Simulation / prediction of unpublished data from the rate equation	A22		
	A23		
	A27		
Conceptual:	A1	B3	
· Knowledge of interionic interactions and inter-or intramolecular interactions and their relationship with association	A4		
phenomena, self-aggregation or molecular conformation.	A10		
· Mastering the own methods of chemical kinetics. Interpretation at molecular level (mechanistic) of chemical reactions.	A14		
Understand and know the factors that can change the rate of a chemical reaction.			
· Understand the catalysis process and its relation to chemical-, photochemical- or electrochemical-activation			
Attitudinal:	A22	B1	C3
Provide appropriate reports of an experimental study	A23	В3	C6
Analyze and critique published kinetic studies of low difficulty.	A25	B4	
	A27		

	Contents
Торіс	Sub-topic
Ionic and molecular interactions	\cdot lonic interactions in the liquid phase: activity coefficient. Debye-Hucke's law. lonic
	strength.
	· Molecular interactions. Dipole moment. Polarizability: equation of Clausius-Mossotti.
	Dipolar interactions. Hydrophobic interaction: self-aggregation and molecular
	conformation.
	·Colloids: direct and reverse micelles, biological membranes.
	Macromolecules
Transport phenomena	· Flux. Diffusion. Fick's first lay. Stokes-Einstein equation.
	Thermal conductivity
	· Electric conductivity: the Deby-Huckel-Onsager theory.
	- Viscosity
Rate equation and reaction mechanism	\cdot Integrated rate equation. Initial rates. Order of reaction. The method of flooding.
	Physical properties in kinetic studies. Experimental techniques.
	\cdot Complex reaction schemes: parallel and concurrent reactions, reversible reactions,
	consecutive reactions.
	The steady-state approximation.
	\cdot Reaction mechanisms: elementary reactions. Deduction of reaction mechanisms.
Kinetic Theories and their applications	Collisions theory: the frequency factor
	\cdot Transition state theory. The activated complex. Statistical thermodynamics
	approach. Activation parameters. Potential energy surfaces.
	· Reactions in the gas phase: Lindeman mechanism
	· Reactions is solution. Diffusion controlled reactions
	Photochemical reactions
Catalysis	· Homogeneous, heterogeneous and microheterogeneous catalysis
	· General mechanism of catalysis: rate equations.
	· Homogeneous catalysis: nucleophilic catalysis, acid-base catalysis,
	· Linear free energy relations: the Swain-Scott equation, the Bronsted law, the
	Hammett correlation, the Taft equation.
	Microheterogeneous catalysis; micellar catalysis, enzyme catalysis.

Introduction to electrochemical kinetics	Electrochemical reactions: special topics
	· Interface electrode-solution: the Gouy-Chapman model
	Rate of charge transfer. The Butler-Volmer equation
	· Voltametry
Lab experiments	· Laboratory experiments relative to Transport phenomena, determination of rate
	equations and catalytic processes.

	Planning]		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Guest lecture / keynote speech	A25 A27 B3	21	42	63
Seminar	A1 A4 A10 A14 A20	7	28	35
	B1 B3			
Laboratory practice	A19 A20 A22 A23	20	20	40
	A25 A27 B1 B3 B4 C3			
Oral presentation	A20 A27 B3 C3 C6	1	5	6
Mixed objective/subjective test	A1 A3 A4 A10 A14	4	0	4
	A20			
Personalized attention		2	0	2

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies
Methodologies	Description
Guest lecture /	? In the exposition classes the teacher introduces all concepts, models, methodologies and theories of the fundamental
keynote speech	contents of the discipline program. Through the virtual campus, the student will can find the material that complements the
	class for his previous study and analysis. The previous reading of the subjects that expose in class, definitely, improves the
	academic yield and facilitates the interaction student-teacher.
Seminar	? Seminars: session to make the most important concepts and methods understandable to undergraduate students by means
	of the resolution of questions, problems and the criticism of practical studies. One of the important objectives of the seminars
	is to learn how to solve numerical problems, which help emphasize features in the underlying theory, and they illustrate
	practical applications.
Laboratory practice	?They will perform experiments related with the concepts treated in the discipline. The student will treat to reproduce simple
	laboratory experiments under the guidance of the instructor. Each student will have to elaborate a report of each experiment,
	following the indications of the professor, and /or the exposition / discussion of his results. It is required to pass the
	experimental probes to can pass the overall discipline.
Oral presentation	? Presentation of the results obtained in the laboratory work using both the information and communication technologies.
	Discussion and criticism in group of thesa results. (Alternative option to the presentation of the written report)
Mixed	? Proposal of questions and exercises, related with the concepts introduced in the classes of theory, seminar or in Lab
objective/subjective	experiments, to solve. The student alone will demonstrate, during a fixed time interval, the adquired knowledges and his
test	capacity for solving exercices and/or developing conceptual questions.

	Personalized attention
Methodologies	Description

Guest lecture /	It recommends to the students the use of tutorials to solve all kind of doubts, questions and concepts that have not remained
keynote speech	sufficiently clear, and that refer, either to the development of material concepts or to find the answers to problems introduced
Seminar	in the seminars, laboratory practices or in the preparation of the final test. The teachers will be available to solve any question
Laboratory practice	about the contents of the subject at the established timetable.
Oral presentation	Students with a waiver for academic assistance will have both face-to-face and e-mail tutorials, whenever necessary.
	Before carrying out the experimental work, the student will summarize the scientific article that reflects the experiment that
	will be reproduced. During its development the student is advised on the complications that may arise. After ending the Lab
	work, the instructor will help the student in the interpretation of the results, based on the theoretical models developed in the
	classroom for the quantitative treatment of the results.

		Assessment	1
Methodologies	Competencies /	Description	Qualification
	Results		
Laboratory practice	A19 A20 A22 A23	? Lab experiments reflect the abillity and capacity of the student in the planning,	10
	A25 A27 B1 B3 B4 C3	design and development of simple experiments.	
		? Essay of different techniques in the characterisation of systems or in monitoring	
		reaction processes.	
		? Laboratory Report with the quantitative treatment of the experimental results	
		following the models explained in the lectures.	
		? Submitting a lab report to reflect the previous concepts is required.	
		? For evaluating this activity it is taken into account the lab work, the obtained results,	
		and the prepared report: written report or oral presentation.	
Mixed	A1 A3 A4 A10 A14	? Performance of written examination about theoretical and practical questions,	80
objective/subjective	A20	regarding the contents treated in all parts of the course.	
test		? It is required to surpass each of the activities to pass the course. The qualification of	
		a surpassed activity will be kept in the remaining opportunities of the current academic	
		year (second opportunity).	
		? If the final exam are not passed, even if the average with the qualification of the Lab	
		practices is higher than 5, the numerical qualification that appears in the ACTA will be	
		the score obtained in the mixed test.	
		? The student will obtain the qualification of No Presented when he do not take part in	
		the laboratory practice program and, therefore, do not present to the mixed test.	
		? The teaching-learning process refers to an academic course, so in the successive	
		academic courses the student starts over from scratch.	
Oral presentation	A20 A27 B3 C3 C6	? Exposure and critical analysis of the results of laboratory practices.	10
		? Quality of the information produced in the presentation and the skills shown in the	
		communication.	
		? Ability to defend and contrast their results	

Assessment comments

-Attendance to all laboratory practices and delivery of the corresponding report are required, either for partial-time student or for full-time student. -Attendance to seminars is not mandatory for students with academic exemption. The student participation during seminars development is very importan in the final qualification.

-To pass the course it will be necessary to obtain in the mixed test a mark not lower than 5.0 out of 10 (4.0 out of 8) and achieve a minimum

qualification of 5.0 in the proportional sum of all the activities.

-The qualification of "Matricula" is preferably granted at the first opportunity.

-Second Opportunity: repetition of the exam upon contents of seminars, lab practical and theory clases.

	Sources of information		
Basic	- P. W. Atkins, J. de Paula (2008). Química Física, 8ª Ed Panamericana		
	- Espenson J. H. (1995). Chemical kinetics and reaction mechanisms 2ª ed McGraw-Hill, New York.		
	- Laidler K. J. (1994). Chemical Kinetics . Harper and Row, New York.		
	- Bockris, J.O.M., Reddy, A K.N. (1998). Modern Electrochemistry 1. Ionics. 2nd ed Plenum Press, New York		
Complementary	- P. L. Brezonik (1994). Chemical Kinetics and Process Dynamic in Aquatic Systems Lewis Publishers		
	- P. Sanz Pedredo (1992). Físicoquímica para Farmacia y Biología Masson-Salvat Medicina		
	- R. A. Jackson (2004). Mechanism in Organic Reactions Royal Society of Chemistry (RSC)		
	- LEVINE I. N. (2004). Fisicoquímica 5ª ed McGraw-Hill, Madrid		
	- KORITA, J, DVORAK, J., KAVAN, L. (1987). Principles of Electrochemistry. 2nd ed Wiley, Chichester		
	- BERRY R. S., RICE S. A., ROSS J. (2000). Physical Chemistry. 2ª ed Oxford University Press, New York		
	- J. BERTRAN-RUSCA, J. NUÑEZ-DELGADO Eds , (2002). Química Física, vol. II. Ariel Ciencia		
	- S. R. Logan (2000). Fundamentos de Cinética Química. Addison Wesley		
	- BOCKRIS, J.O.M., REDDY, A.K.N., GAMBOA-ADELCO, M.E. (2000). Modern Electrochemistry 2A. Fundamentals		
	of Electrodics Kluwer Academic/Plenum Press: New York		

Recommendations
Subjects that it is recommended to have taken before
General Chemistry 1/610G01007
General Chemistry 2/610G01008
General Chemistry 3/610G01009
Chemistry Laboratory 1/610G01010
Physical Chemistry 1/610G01016
Physical Chemistry 2/610G01017
Physical Chemistry 3/610G01018
Experimental Physical Chemistry/610G01019
Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus
Other comments
They are necessary the knowledges of Chemistry and Physical Chemistry materias
-To know draft, synthesize and correctly present a work.
-To dominate the graphic representation, linear regression with basic knowledges of statistics.
-To use at basic level tools of computing, such as Excel, Word, Power Point.
-It recommends to know English of intermediate level (reading).

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.