| | | Teaching Guide | | | |--------------------------|--|-------------------------------------|------------------------|----------------------------------| | Identifying Data | | | 2019/20 | | | Subject (*) | Computational Continuous Media Mechanics | | Code | 730496214 | | Study programme | Mestrado Universitario en Enxeñaría Naval e Oceánica (plan 2018) | | | ' | | | | Descriptors | | | | Cycle | Period | Year | Туре | Credits | | Official Master's Degree | e 2nd four-month period | First | Obligatory | 4.5 | | Language | SpanishGalicianEnglish | | | | | Teaching method | Face-to-face | | | | | Prerequisites | | | | | | Department | Enxeñaría Naval e IndustrialEnxe | eñaría Naval e Oceánica | | | | Coordinador | Fariñas Alvariño, Pablo | E-mail | pablo.farinas@u | udc.es | | Lecturers | Balsa Barros, Saúl | E-mail | saul.balsa.barro | OS . | | | Fariñas Alvariño, Pablo | | pablo.farinas@u | udc.es | | Web | | | | | | General description | This subject studies fundamental | and theoretical background of co | omputational mechanics | s, as well as its applicability. | | | Fundamental models for fields the | eory will be analysed and will allo | w the students to code | their own developments. | | | Study programme competences | |------|--| | Code | Study programme competences | | B1 | CB06 Posuír e comprender coñecementos que acheguen unha base ou oportunidade de ser orixinais no desenvolvemento e/ou | | | aplicación de ideas, a miúdo nun contexto de investigación | | В3 | CB08 Que os estudantes sexan capaces de integrar coñecementos e enfrontarse á complexidade de formular xuízos a partir dunha | | | información que, sendo incompleta ou limitada, inclúa reflexións sobre as responsabilidades sociais e éticas vinculadas á aplicación dos | | | seus coñecementos e xuízos | | B5 | CB10 Que os estudantes posúan as habilidades de aprendizaxe que lles permitan continuar estudando dun modo que haberá de ser en | | | boa medida autodirixido ou autónomo. | | В6 | G01 Capacidade para resolver problemas complexos e para tomar decisións con responsabilidade sobre a base dos coñecementos | | | científicos e tecnolóxicos adquiridos en materias básicas e tecnolóxicas aplicables na enxeñaría naval e oceánica, e en métodos de | | | xestión. | | C2 | C1 Capacidade pra desenrolar a actividade profesional nun entorno multilingue | | C3 | ABET (a) An ability to apply knowledge of mathematics, science, and engineering. | | C7 | ABET (e) An ability to identify, formulate, and solve engineering problems. | | C12 | ABET (j) A knowledge of contemporary issues. | | C13 | ABET (k) An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. | | Learning outcomes | | | |---|------------|-------| | Learning outcomes | Study prog | ramme | | | compete | nces | | Ability for coding numerical methods related to continuum mechanics | BC1 | CC2 | | | ВС3 | CC3 | | | BC5 | CC7 | | | BJ1 | CC12 | | | | CC13 | | Ability to develop fundamental test cases related to structures and hydrodynamic analysis | BC1 | CC2 | | | BC3 | CC3 | | | BC5 | CC7 | | | BJ1 | CC12 | | | | CC13 | | Topic | | |---|--| | | Sub-topic | | he blocks or the following contents develop the established | 1 Finite Difference, Finite Element and Finite Volume Method. | | opics in the "Memoria de Verifcación". | 2Eliptic PDE. Hydrodynamic and structures application. | | | 3 Solution to linear equations systems. | | | 4 Convective interpolation Schemes introduction. | | | 5 Coding cases. | | emembering conservation laws: | Conservation laws (mass and momentum). | | | Combined convection / diffusion | | | Constitutive relations | | ressure velocity coupling algorithms: | Introduction to the closure problem. | | | Numerical versus physical incompressibility. | | | Staggered grids. | | | SIMPLE/ER/C and PISO methods for staggered grids. | | | SIMPLE/ER/C and PISO methods for collocated grids. | | | Implementing cases. | | inear equations systems: | Sparse matrix systems. | | | Point to point, line to line and plane to plane methods. | | | High and low frequency errors. Multigrid methods. | | | Conjugate gradient method. | | | Implementing cases | | Insteady problems: | Explicit, implicit and fully implicit schemes in 1D transient pure diffusive case. | | | Extension to 3D case. | | | Combined advection diffusion transient case. | | | Transient pressure velocity coupling. | | | Implementing cases. | | pecial Boundaries: | Remembering Dirichlet and von Newmann boundaries. | | | Combined boundary conditions. | | | Wall laws. | | | Special boundaries. | | | Free surface. | | ases over commercial software: | Proposed cases by the proffessor. | | | Planning | | | | |--------------------------------|-------------------|----------------|--------------------|-------------| | Methodologies / tests | Competencies | Ordinary class | Student?s personal | Total hours | | | | hours | work hours | | | Guest lecture / keynote speech | B1 B3 B5 B6 C2 C3 | 35 | 0 | 35 | | | C7 C12 C13 | | | | | Problem solving | B1 B3 B5 B6 C2 C3 | 10 | 0 | 10 | | | C7 C12 C13 | | | | | Supervised projects | B1 B3 B5 B6 C2 C3 | 0 | 33 | 33 | | | C7 C12 C13 | | | | | Case study | B1 B3 B5 B6 C2 C3 | 0 | 32.5 | 32.5 | | | C7 C12 C13 | | | | | Objective test | B1 B3 B5 B6 C2 C3 | 1 | 0 | 1 | | | C7 C12 C13 | | | | | Personalized attention | | 1 | 0 | 1 | Methodologies | Methodologies | Description | |---------------------|---| | Guest lecture / | Oral presentation complemented with the use of multimedia and the introduction of some questions addressed to students, in | | keynote speech | order to transmit knowledge and facilitate learning. | | Problem solving | Technique where a specific complex situation must be solved, based on the knowledge that has been worked on, which can | | | have more than one possible solution. | | Supervised projects | Methodology designed to promote the autonomous learning of students, under the advise of the professor and under varied | | | scenarios (academic and professional). It is referred primarily to learning how to do things. It is an option based on the | | | assumption by students of the responsibility for their own learning. This teaching system is based on two basic elements: the | | | independent learning of the students and the monitoring of that learning by the professor. | | Case study | Methodology where the subject faces the description of a specific situation that poses a problem that has to be understood, | | | valued and solved by a group of people, through a process of discussion. The student is faced with a specific problem (case), | | | which describes a real situation of professional life, and must be able to analyze a series of facts, referring to a particular field | | | of knowledge or action, to reach a reasoned decision through a process of discussion in small work groups. | | Objective test | Is the exam. Might be written, oral or a mix. | | Personalized attention | | | |------------------------|---|--| | Methodologies | Description | | | Supervised projects | Is the support for the homework to be developed by the students. | | | Guest lecture / | | | | keynote speech | Class attendance is not compulsory and will not be scored. Therefore, there will be no differences between part/full time | | | Case study | students. All of them will need to attain the same requirements to pass this subject. Students with "dispensa académica" will | | | Problem solving | be constrained by the same requirements than full time students. | | | | | | | Assessment | | | | |---------------------|-------------------|--|---------------| | Methodologies | Competencies | Description | Qualification | | Supervised projects | B1 B3 B5 B6 C2 C3 | It is compulsory, under professor demand, to deliver the proposed home tasks and | 60 | | | C7 C12 C13 | simulations on time along this course. The delivered tasks and simulations will be | | | | | assessed by the professor and will be considered for the final qualification. | | | | | | | | Objective test | B1 B3 B5 B6 C2 C3 | Is the exam. | 40 | | | C7 C12 C13 | | | ## Assessment comments In order to pass this subject it is compulsory attain a qualification above four over ten in the exam. It is also necessary to deliver the required homework (EACH/ALL OF THE REQUIRED TASKS) in the correct manner and within the limiting established time. In case the homework be not delivered in the correct way and/or time the possibility to pass this subject will be lost. The students presence will not required and is not scored. Therefore there will be no difference between the partial time and full time students. All of them will develop the same work/requirements in order to pass the subject. The same requirements will be applied to students with "dispensa académica". | | Sources of information | |---------------|--| | Basic | - Pablo Fariñas (2013). Apuntes de clase. | | | - Maliska C.R. (1995). Transferencia de calor e mecánica de fluidos computacional LTC editora | | | - Versteeg H.K. & Description Vers | | | Longmann | | | - Hildebrand F.B. (1976). Advanced calculus for applications. Prentice hall | | Complementary | | ## Recommendations Subjects that it is recommended to have taken before Subjects that are recommended to be taken simultaneously Subjects that continue the syllabus Other comments In order to attain a sustainable environment and satisfy the action number five: ?Docencia e investigación saudable e sustentable ambiental e social? of the "Plan de Acción Green Campus Ferrol": All documents developed along this subject will: - 1.- Be developed in electronic format. - 2.- Be released through the Moodle platform, and avoiding printed documents. In case the paper format be necessary: - 1.- Plastics will be avoided. - 2.- Both faces of paper will be used. - 3.- Recycled paper will be used. - 4.- Avoid printed test drafts. A sustainable use of resources and facilities must be considered in order to avoid negative impacts over the natural environment. (*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.