

		Guia d	ocente			
	Datos Identificativos 2020/21					
Asignatura (*)	Aplicaciones Sintéticas de los Compuestos Organometálicos Código			610509112		
Titulación	Mestrado Universitario en Investig	gación Química	a e Química Industrial	(Plan 2020)		
		Descri	ptores			
Ciclo	Periodo	Cu	rso	Tipo	Créditos	
Máster Oficial	2º cuatrimestre	Prin	nero	Optativa	3	
Idioma	Castellano		'		'	
Modalidad docente	Presencial					
Prerrequisitos						
Departamento	Química					
Coordinador/a	Sarandeses Da Costa, Luis Alberto Correo electrónico luis.sarand			luis.sarandeses	ideses@udc.es	
Profesorado	Perez Sestelo, Jose		Correo electrónico	o electrónico jose.perez.sestelo@udc.es		
	Sarandeses Da Costa, Luis Alberto		luis.sarandeses@udc.es		@udc.es	
Web	www.usc.es/gl/centros/quimica/cu	rso/master.htr	nl	-		
Descripción general	Esta materia es básica en la espe	cialidad Quím	ica Sintética porque es	studia la reactivida	d de los compuestos	
	organometálicos y sus aplicacione	es en síntesis	y catálisis. Asimismo,	os conceptos abor	dados en esta materia son de	
	utilidad en otras de módulos vecinos como Estructura y Reactividad Química, Nanoquímica y Nuevos Materiales y					
Química Biológica.						
	Esta materia está integrada en la especialidad Química Sintética. Se relaciona con las asignaturas Compuestos			signaturas Compuestos		
	Organometálicos y Química de Coordinación Avanzada, que recogen aspectos generales de la estructura y reactividad de			s de la estructura y reactividad de		
	los compuestos organometálicos y de los complejos metálicos de coordinación.					
	La utilización de los compuestos organometálicos y la catálisis por metales de transición son herramientas funda			son herramientas fundamentales		
	de la química sintética actual, tant	to en su aspec	to académico como e	n el industrial. La s	íntesis orgánica actual se plantea	
	el desarrollo de procesos más selectivos y sostenibles, objetivos para los que se requieren con frecuencia los compuestos organometálicos y la catálisis.					

Plan de contingencia

- 1. Modificaciones en los contenidos
- ? No se realizarán cambios.
- 2. Metodologías
- *Metodologías docentes que se mantienen
- ? Sesión magistral.
- ? Seminario.
- ? Prueba mixta.
- *Metodologías docentes que se modifican
- ? Todas las metodologías docentes se llevarán a cabo mediante Teams.
- 3. Mecanismos de atención personalizada al alumnado
- ? Correo electrónico: permanente.
- ? Moodle: Diariamente; según la necesidad del alumnado.
- ? Teams: Sesiones magistrales, seminarios, tutorías (2-6 h/semana).
- 4. Modificacines en la evaluación
- ? Seminario: 60%

La evaluación continua tendrá un peso del 60% en la calificación de la materia y constará de los siguientes componentes: resolución de problemas y casos prácticos, cuestiones durante lo cursos y asistencia y participación. Pasa de 40% a 60%. ? Prueba mixta 40%

Prueba mixta que versará sobre los contenidos explicados. Común al resto das universidades participantes en el máster. Pasa de 60% a 40%.

*Observaciones de evaluación:

La prueba mixta consistirá en un conjunto de preguntas a través de Moodle o Forms para responder en un tiempo determinado.

No hay restricciones de mínimos en los apartados evaluados.

Si el alumnado tuviese dificultades para la realización de la prueba mixta se haría uso de llamadas telefónicas o se emplearía un método de evaluación asíncrono.

Alumnado con reconocimiento de dedicación a tiempo parcial y dispensa académica de exención de asistencia: elaboración de trabajos tutelados (60%) y prueba mixta (40%).

5. Modificaciones de la bibliografía o webgrafía

Non hay modificaciones de la bibliografía.

	Competencias del título		
Código	Competencias del título		
A1	CE1 - Definir conceptos, principios, teorías y hechos especializados de las diferentes áreas de la Química		
A2	CE2 -Proponer alternativas para la resolución de problemas químicos complejos de las diferentes especialidades químicas		
А3	CE4 - Innovar en los métodos de síntesis y análisis químico relacionados con las diferentes áreas de la Química.		
A6	A6 CE6 - Diseñar procesos que impliquen el tratamiento o eliminación de productos químicos peligrosos		
A8	CE8 - Analizar y utilizar los datos obtenidos de manera autónoma en los experimentos complejos de laboratorio relacionándolos con las		
	técnicas químicas, físicas o biológicas apropiadas, e incluyendo el uso de fuentes bibliográficas primarias		
B1	CB6 - Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas,		
	a menudo en un contexto de investigación		
B2	CB7 - Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o		
	poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.		

B4	CB9 - Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos
	especializados y no especializados de un modo claro y sin ambigüedades.
B5	CB10 - Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser
	en gran medida autodirigido o autónomo
B7	CG2 - Identificar información de la literatura científica utilizando los canales apropiados e integrar dicha información para plantear y
	contextualizar un tema de investigación
B10	CG5 - Utilizar terminología científica en lengua inglesa para argumentar los resultados experimentales en el contexto de la profesión
	química
B11	CG6 - Aplicar correctamente las nuevas tecnologías de captación y organización de información para solucionar problemas en la
	actividad profesional

Resultados de aprendizaje			
Resultados de aprendizaje	Com	petencia	as del
		título	
Comprender el fundamento de los ciclos catalíticos desde el punto de vista de las coordenadas de reacción y las superficies	AM1	BM5	
de energía potencial.	AM6		
	AM8		
Entender las aplicaciones en síntesis de la diversidad de procesos de formación de enlaces mediadas por compuestos	AM2	BM1	
organometálicos.	AM3	BM2	
	AM6	BM4	
		BM7	
		BM10	
		BM11	
Proponer secuencias sintéticas con desconexiones clave basadas en procesos sintéticos de compuestos organometálicos.	AM2	BM1	
	AM3	BM2	
	AM6	BM4	
		BM7	
		BM11	

	Contenidos	
Tema	Subtema	
Tema 1. Principios y fundamentos energéticos de los ciclos	? Conceptos generales	
catalíticos organometálicos.	? Termodinámica y cinética del cíclo catalítico de reacciones catalizadas por metales	
	de transición.	
	? Aplicación: Acoplamiento cruzado catalizado por Pd; Sinergia entre resultados	
	computacionales y experimentales.	
Tema 2. Reacciones de acoplamiento cruzado y reacción de	? Reacciones de acoplamiento cruzado. Generalidades. Grupos salientes. Metales.	
Heck.	Selectividad.	
	? Reacciones de formación de enlaces carbono?carbono: organometálicos de Li, Zn,	
	Al, Zr, Sn, Cu; compuestos de B y Si; otros metales; enolatos.	
	? Reacciones de formación de enlaces carbono?heteroátomo.	
	? Reacción de Heck. Componentes de la reacción. Reacciones inter- e	
	intramoleculares. Reacciónes de Heck asimétricas. Reacciones de Heck con especie	
	organometálicas.	

Tema 3. Reacciones de inserción.	? Reacciones de carbonilación. Generalidades. Mecanismo.
	? Reacciones de acoplamiento carbonilante.
	? Reacciones de hidroformilación.
	? Reacciones de carbonilación con complejos de carbonilo.
	? Carboxilación.
	? Reacciones de descarbonilación y acoplamiento descarbonilante.
	? Otras reacciones de inserción con circonio y titanio.
Tema 4. Reacciones de complejos n3-alilo.	? Complejos n3-alilo de Paladio (1. Síntesis y propiedades. 2. Regioselectividad y
	estereoselectividad)
	? Reacciones de sustitución alílica catalizadas por complejos de Paladio (1.
	Alquilación alílica. 2. Aminación, eterificación y reducción alílica. 3. Reacciones de
	ciclación a través de procesos de inserción en alquenos. 4. Reacciones de
	cicloadición a través de intermedios trimetilenometano).
	? Reacciones de sustitución alílica catalizadas por complejos de otros metales de
	transición (Iridio, Níquel, Hierro, Molibdeno).
	? Reacciones de alilación con alquinos y alenos catalizadas por complejos de Rodio.
Tema 5. Reacciones de complejos electrófilos de alquenos,	? Reacciones de inserción en alquinos y reacciones tándem tipo Heck, Suzuki, etc
alquinos, dienos y arenos.	? Reacciones de inserción mediadas por otros metales (Zr y Ti).
	? Adiciones electrófilas sobre alquenos y alquinos.
	? Reacción de Nicholas y Pauson-Khand.
	? Reacciones de alquenos con paladio en alto estado de oxidación.
	? Aplicaciones sintéticas de complejos n4-dienilo y n6-areno.
Tema 6. Reactividad de carbenos metálicos.	? Características de los carbenos.
	? Carbenos y metales de transición. Estructura y tipos.
	? Transformaciones que involucran carbenos de metales de transición.
	? Metátesis de olefinas.
Tema 7. Reacciones de activación de enlaces C?H.	? Introducción a la activación de enlaces C-H: relevancia, dificultades y principales
	mecanismos de activación.
	? Reacciones de inserción de carbenos y nitrenos
	? Reacciones de borilación catalizada por Ir
	? Funcionalización de alcanos y arenos catalizada por Pd(II): oxigenación, arilación,
	halogenación, reacción de Heck oxidante.

	Planificaci	ión		
Metodologías / pruebas	Competéncias	Horas presenciales	Horas no presenciales / trabajo autónomo	Horas totales
Seminario	A1 A2 A3 A6 A8 B1 B2 B4 B5 B7 B10 B11	7	18	25
Prueba mixta	A1 A2 A3 B2 B5	3	0	3
Sesión magistral	A1 A8 B1 B2 B7 B10 B11	12	33	45
Atención personalizada		2	0	2

Metodologías	
Metodologías	Descripción

Seminario	Seminarios realizados con profesorado propio del Máster, o con profesionales invitados de la empresa, la administración o de
	otras universidades. Sesiones interactivas relacionadas con las distintas materias con debates e intercambio de opiniones con
	los alumnos.
	Resolución de ejercicios prácticos (problemas, cuestiones tipo test, interpretación y procesamiento de la información,
	evaluación de publicaciones científicas, etc.)
	Asimismo, durante los seminarios se contempla la posibilidad de llevar a cabo otras metodologías:
	? Realización de trabajos, tanto individualmente, como en grupo, sobre temas científicos relacionados con las distintas
	materias del Máster.
	? Exposición oral de trabajos, informes, etc., incluyendo debate con profesores y alumnos.
	? Utilización de programas informáticos especializados e internet. Soporte docente on-line (Campus Virtual).
Prueba mixta	Se programa 1 examen escrito final, que permitirá evaluar objetivamente el grado de asimilación y la capacidad de aplicación
	de los contenidos de la materia por parte del alumno. La prueba objetiva incluirá un único tipo de preguntas, que estarán
	relacionadas con la estructura, la reactividad y la síntesis de compuestos orgánicos, y que permitirán determinar si las
	respuestas son correctas.
Sesión magistral	Clases presenciales teóricas. Clases expositivas (utilización de pizarra, ordenador, cañón), complementadas con las
	herramientas propias de la docencia virtual.

	Atención personalizada		
Metodologías	Metodologías Descripción		
Seminario	Se programan 2 tutorías individuales o en grupo reducido para comprobar la comprensión de la materia y complementar la		
Sesión magistral	sión magistral formación del alumno mediante resolución de dudas y otras cuestiones.		

	Evaluación		
Metodologías	Competéncias	Descripción	Calificación
Seminario	A1 A2 A3 A6 A8 B1	La evaluación continua tendrá un peso del 40% en la calificación de la asignatura y	40
	B2 B4 B5 B7 B10 B11	constará los siguientes componentes: resolución de problemas y casos prácticos	
		(15%), exposición oral [(casos prácticos, problemas), 10%] y cuestiones orales	
		durante el curso (10%) y asistencia y participación (10%).	
Prueba mixta	A1 A2 A3 B2 B5	El examen final versará sobre la totalidad de los contenidos de la asignatura.	60

Observaciones evaluación

La evaluación de esta materia se hará mediante evaluación continua y la realización de un examen final.

Los alumnos repetidores tendrán el mismo régimen de asistencia a las clases que los que cursan la asignatura por primera vez.

La evaluación continua (N1) tendrá un peso del 40% en la calificación de la asignatura y constará los siguientes componentes: resolución de problemas y casos prácticos (15%), exposición oral [(casos prácticos, problemas), 10%] y cuestiones orales

durante el curso (10%) y asistencia y participación (10%).

El examen final (N2) versará sobre la totalidad de los contenidos de la asignatura.

La calificación del alumno se obtendrá cómo resultado de aplicar la fórmula siguiente:

Nota final = $máximo (0.4 \times N1 + 0.6 \times N2)$

Siendo N1 la nota numérica correspondiente a la evaluación continua (escala 0?10) y N2 la

nota numérica del examen final (escala 0?10).

Alumnos con reconocimiento de dedicación a tiempo parcial y dispensa académica de exención de asistencia: Se considerarán

exentos de las sesiones magistrales si bien se les facilitará la

asistencia al mayor número posible de seminarios. De no poder asistir a

los seminarios el alumno hará un trabajo tutorizado. Esto se aplicará a

ambas oportunidades.

	Fuentes de información		
Básica	- Bates, R. (2012). Organic Synthesis Using Transition Metals, 2nd Ed Wiley		
	- Hegedus, L. S. (1999). Transition Metals in the Synthesis of Complex Organic Molecules, 2nd Ed University		
	Science Books		
Complementária	- Luther, G. W. (2016). Reactivity of Transition Metal Complexes: Thermodynamics, Kinetics and Catalysis, in		
	Inorganic Chemistry for Geochemistry and Environmental Sciences: Fundamentals and Applications. Wiley		
	- Cybulski, A.; Moulijn, J. A.; Stankiewicz, A. (2010). Novel Concepts in Catalysis and Chemical Reactors: Improving		
	the Efficiency for the Future. Wiley-VCH		
	- Ananikov, V. P. (2015). Understanding Organometallic Reaction Mechanisms and Catalysis: Computational and		
	Experimental Tools. Wiley-VCH		
	- Negishi, E., Ed. (2002). Handbook of Organopalladium Chemistry for Organic Synthesis. Wiley		
	- De Meijere, A., Bräse, S., Oestreich, M. (2014). Metal-Catalyzed Cross-Coupling Reactions and More. Wiley-VCH		
	- Beller, M., Bolm, C. (2004). Transition Metals for Organic Synthesis, 2nd Ed Wiley-VCH		
	- Kazmaier, U. (2012). Transition Metal Catalyzed Enantioselective Allylic Substitution in Organic Synthesis.		
	Springer-Verlag		
	- Crabtree, R. H. (2005). The Organometallic Chemistry of the Transition Metals, 4th Ed Wiley		
	- Yu, JQ. (2016). Science of Synthesis: Catalytic Transformations via C-H Activation Vol. 1 & D. Thieme		

Química Organometálica/610509111 Determinación Estructural Avanzada/610509103 Estructura y Reactividad de los Compuestos Orgánicos/610509114 Asignaturas que se recomienda cursar simultáneamente	
Estructura y Reactividad de los Compuestos Orgánicos/610509114 Asignaturas que se recomienda cursar simultáneamente	
Determinación Estructural Avanzada/610509103 Estructura y Reactividad de los Compuestos Orgánicos/610509114 Asignaturas que se recomienda cursar simultáneamente	
Estructura y Reactividad de los Compuestos Orgánicos/610509114 Asignaturas que se recomienda cursar simultáneamente	
Asignaturas que se recomienda cursar simultáneamente	
Cintagin antone colontina (CADECOMA)	
Síntesis estereoselectiva/610509113	
Asignaturas que continúan el temario	
Otros comentarios	

(*) La Guía Docente es el documento donde se visualiza la propuesta académica de la UDC. Este documento es público y no se puede modificar, salvo cosas excepcionales bajo la revisión del órgano competente de acuerdo a la normativa vigente que establece el proceso de elaboración de guías