
Teaching Guide

Identifying Data 2020/21

Subject (*) Concurrency and Parallelism Code 614G01018

Study programme Grao en Enxeñaría Informática

Descriptors

Cycle Period Year Type Credits

Graduate 2nd four-month period Second Obligatory 6

Language SpanishGalicianEnglish

Teaching method Hybrid

Prerequisites

Department Ciencias da Computación e Tecnoloxías da InformaciónComputaciónEnxeñaría de Computadores

Coordinador Paris Fernandez, Javier E-mail javier.paris@udc.es

Lecturers Barreira Rodriguez, Noelia

Darriba López, Diego

Enes Álvarez, Jonatan

Fraguela Rodriguez, Basilio Bernardo

González Domínguez, Jorge

Martín Rodilla, Patricia

Paris Fernandez, Javier

Quintela Carreira, Juan Jose

Sanchez Penas, Juan Jose

Touriño Dominguez, Juan

E-mail noelia.barreira@udc.es

diego.darriba@udc.es

jonatan.enes@udc.es

basilio.fraguela@udc.es

jorge.gonzalezd@udc.es

patricia.martin.rodilla@udc.es

javier.paris@udc.es

juan.quintela.carreira@udc.es

juan.jose.sanchez.penas@udc.es

juan.tourino@udc.es

Web moodle.udc.es

General description

Contingency plan 1. Modifications to the contents

No changes.

2. Methodologies

There will be no change to the teaching methodologies.

3. Mechanisms for personalized attention to students

email: daily. Students may contact their teacher through email to ask question about the lectures or the laboratory

assignments.

teams: daily. Students may ask for a meeting on teams to ask questions about the lectures or the laboratory assignaments.

4. Modifications in the evaluation

No changes to the evaluation.

*Evaluation observations:

No changes.

5. Modifications to the bibliography or webgraphy

No changes.

Study programme competences / results

Code Study programme competences / results

1/5



A12 Coñecemento e aplicación dos procedementos algorítmicos básicos das tecnoloxías informáticas para deseñar solucións a problemas,

analizando a idoneidade e a complexidade dos algoritmos propostos.

A20 Coñecemento e aplicación dos principios fundamentais e técnicas básicas da programación paralela, concorrente, distribuída e de tempo

real.

B3 Capacidade de análise e síntese

C4 Desenvolverse para o exercicio dunha cidadanía aberta, culta, crítica, comprometida, democrática e solidaria, capaz de analizar a

realidade, diagnosticar problemas, formular e implantar solucións baseadas no coñecemento e orientadas ao ben común.

C6 Valorar criticamente o coñecemento, a tecnoloxía e a información dispoñible para resolver os problemas cos que deben enfrontarse.

C8 Valorar a importancia que ten a investigación, a innovación e o desenvolvemento tecnolóxico no avance socioeconómico e cultural da

sociedade.

Learning outcomes

Learning outcomes Study programme

competences /

results

The student should know basic algorithms and how to apply them to solve problems, analyzing the adequacy and complexity

of the proposed concurrent and parallel algorithms.

A12 B3 C4

The student should know how to apply the fundamentals of real time, parallel, concurrent and distributed programming. A20 C6

C8

Contents

Topic Sub-topic

T1. Concurrent programming fundamentals 1.1 Concepts

1.1.1 Hardware architectures

1.1.2 Operating Systems

1,1.3 Threads and Processes

1.2 Multiprocess programming (fork/join)

1.3 Multithread programming

1.4 Critical section

1.5 Mutual exclusion

1.6 Atomic instructions

1.7 Condition synchronization

1.8 Semaphores

1.8.1 Mutex

1.8.2 Semaphores

1.9 Deadlock. Prevention, avoidance, recovery

1.10 Starvation

1.11 Communication and synchronization

1.12 Scalability

T2. Concurrent Algorithms 2.1 Producers/consumers.

2.2 Readers/writers

2.3 Dining philosophers

2.4 Shared nothing

2/5



T3. Parallel programming principles 3.1 Concepts

3.1.1 Levels of paralellism

3.1.2 Data dependencies

3.2 Message passing model

3.2.1 Basic concepts

3.2.2 Point to point communication

3.2.3 Collective operations

3.3 Analysis of parallel algorithms

3.3.1 Performance measure of parallel algorithms

3.4 Methodology for parallel programming

3.4.1 Task decomposition

3.4.2 Task assignment

3.4.3 Optimization techniques

3.5 Schemes for parallel algorithms

3.5.1 Single Process Multiple Data

3.5.2 Master/slave paradigm 

T4. Design of parallel algorithms and applications 4.1 Message passing libraries

4.2 Case of study

4.3 Performance evaluation

4.4 Inclusion of optimization techniques 

Planning

Methodologies / tests Competencies /

Results

Teaching hours

(in-person & virtual)

Student?s personal

work hours

Total hours

Guest lecture / keynote speech A12 A20 C4 C6 C8 30 45 75

Mixed objective/subjective test A12 A20 B3 C4 C6 3 0 3

Laboratory practice A12 A20 B3 C8 16 24 40

Problem solving B3 C6 10 19 29

Practical test: A20 A12 B3 2 0 2

Personalized attention 1 0 1

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

Methodologies

Methodologies Description

Guest lecture /

keynote speech

Lecture with audiovisual reinforcement materials, and questions directed at the students to reinforce the transmission of

concepts and improve the learning process.

Mixed

objective/subjective

test

Written exam with questions about the content of the lectures and the practical problems solved in the laboratory practice.

Laboratory practice Practical activities aimed at enhancing the comprehension of the material by the students, such as programming exercicies.

Problem solving Solving of concrete problems that appeared during the laboratory practice, possibly exploring multiple solutions.

Practical test: Tests about the contents of the laboratory practices. Part of the ongoing evaluation.

Personalized attention

Methodologies Description

3/5



Laboratory practice

Problem solving

During the laboratoy practice, seminars and problem solving sessions students will be able to ask questions about the

contents. The teacher, after considering these questions, will reinforce specific topics, solve problems that involve the

concepts that are unclear, or any other activity that may help to improve the understanding of the content.

All tutoring sessions will be held online.

Assessment

Methodologies Competencies /

Results

Description Qualification

Practical test: A20 A12 B3 Ongoing assesment exams on the contents of the lectures and the laboratory

practices.

20

Laboratory practice A12 A20 B3 C8 Practical exercises divided on two blocks: concurrency and parallelism. Each block is

worth 50% of the laboratory practice grade. Exercises can be solved in groups of two,

but will be graded individually.

30

Mixed

objective/subjective

test

A12 A20 B3 C4 C6 Exam on the contents explained during the lectures and practiced in the laboratory.

There will be two parts: concurrency (topics T1 and T2) and parallelism (topics T3 and

T4). Each part is worth 50% of the grade of the mixed test.

50

Assessment comments

The final grade will be the weighted addition of the mixed test, the laboratory practice grades, and the practical test grades. In order to pass it is

necessary to get at least 50% of the maximum grade.

For the July evaluation only the mixed test will be graded again (70% of the total grade). 

The grade obtained during the term in the laboratory practice (30% of the final grade) and the practicas tests (20% of the final grade) will be used for

both the June and July evaluations. The grade for the laboratory practices will not be reassesed during the second opportunity. The evaluation of the

laboratory practices must be done in the group assigned to each student.

No special consideration will be given to students with part time enrollment.

Sources of information

Basic - Doug Lea (2000). Concurrent programming in Java design, principles and patterns . Reading, Massachusetts:

Addison Wesley

- Joe Armstrong (2007). Programming Erlang: Software for a Concurrent World. United States: Pragmatic

Programmers

- Francisco Almeida [et al.] (2008). Introducción a la Programación Paralela. Madrid: Paraninfo Cengage Learning

- Peter S. Pacheco (1997). Parallel Programming with MPI. San Francisco, California : Morgan Kauffman

Complementary - Wilkinson, B. y Allen, M.. (1999). Parallel Programming. Techniques and Applications Using Networked Workstations

and Parallel Computers. . Upper Saddle River, New Jersey : Prentice Hall,

Recommendations

Subjects that it is recommended to have taken before

Programming II/614G01006

Algorithms/614G01011

Computer Structure/614G01012

Programming Paradigms/614G01014

Software Design/614G01015

Subjects that are recommended to be taken simultaneously

Operating Systems/614G01016

Networks/614G01017

Software Process/614G01019

4/5



Subjects that continue the syllabus

Internet and Distributed Systems/614G01023

Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot

be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.

5/5


