		Teaching Guide			
	ldentifyin	g Data		2021/22	
Subject (*)	Genomics		Code	610441015s	
Study programme	Máster Universitario en Bioloxía N	Nolecular, Celular e Xenética (semipresencial)	'	
		Descriptors			
Cycle	Period	Year	Туре	Credits	
Official Master's Degre	e 2nd four-month period	First	Optional	3	
Language	SpanishGalicianEnglish				
Teaching method	Hybrid				
Prerequisites					
Department	BioloxíaDepartamento profesorad	lo máster			
Coordinador	Vila Taboada, Marta	E-mai	marta.vila.taboa	ada@udc.es	
Lecturers	Becerra Fernandez, Manuel E-mail manuel.becerra@udc.es		a@udc.es		
	Vila Taboada, Marta marta.vila.taboada@udc.es			ada@udc.es	
Web		'	'		
General description	Genomics applies recombinant D	NA, Sanger DNA sequencing	and Next Generation Sec	quencing methodology, and	
	bioinformatics to sequence, asser	mble, and analyze genomes. [Diciplines in genomics em	ncompass several areas of study	
	including structural and functional genomics, comparative genomics, and metagenomics, and have led to an "omics"				
	revolution in modern biology.				
Contingency plan	The contingency plan is not applicable because the planned activities planned do not require it.				

	Study programme competences / results
Code	Study programme competences / results
А3	Skills of understanding the functioning of cells through the structural organization, biochemistry, gene expression and genetic variability.
A11	Skills of understanding the structure, dynamics and evolution of genomes and to apply tools necessary to his study.
B1	Analysis skills to understand biological problems in connection with the Molecular and Cellular Biology and Genetics.
B5	Ability to draft, represent, analyze, interpret and present technical documentation and relevant data in the field of the branch of knowledge
	of the master's degree in the native language and at least in another International diffusion language.
В9	Skills of preparation, show and defense of a work.
C2	Ability to know and use appropriately the technical terminology of the field of knowledge of the master, in the native language and in
	English, as a language of international diffusion in this field
C3	Using ICT in working contexts and lifelong learning.
C8	Valuing the importance of research, innovation and technological development for the socioeconomic and cultural progress of society.

Learning outcomes			
Learning outcomes	Study	/ progra	amme
	con	npetend	es/
		results	
To learn the basics of the different molecular techniques used in genomics, with particular emphasis in NGS	AR3		CC3
	AR11		
To acquire an updated view about the current scope and future perspectives of structural, functional and evolutionary	AR3	BR1	CC2
genomics	AR11	BR5	CC8
		BR9	
To understand how genomes evolve and how molecular and bioinformatic tools are used for that purpose	AR3	BR1	CC2
	AR11	BR5	CC8
		BR9	
DNA microarrays: experimental set up and data analysis.	AR3		
	AR11		

Contents		
Topic	Sub-topic Sub-topic	
The Human Genome Project	History and results	
Whole Genome Sequencing	Mate-pair libraries	
	Annotation	
	Comparative genomics	
	Palaeogenomics	
Next Generation Sequencing (NGS)	Platforms	
	Paired-end libraries	
	Introduction to data analysis	
Metagenomics	Metabarcoding	
Clinical genomics	Amplicon-seq	
	Panel-seq Panel-seq	
	Exome-seq	
	Pharmacogenomics	
Single Nucleotide Polymorphisms (SNPs)	Genome wide association studies (GWAS)	
	Digital genetic testing	
Functional genomics	Transcriptome analysis: microarrays and NGS (RNA-seq)	
Computer lab	Using GALAXY for analysis of NGS data.	
	2. Gene expression analysis using BABELOMICS.	
	3. Farmacogenomic analysis using PHARMKGB.	
	4. Introduction to the Intregative Genomics Viewer (IGV).	

	Plannin	g		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
ICT practicals	A3 A11 B1 B5 B9 C2	3	24	27
	C3			
Guest lecture / keynote speech	A3 A11 B1 C8	2	40	42
Objective test	A3 A11 B1 C8	2	0	2
Personalized attention		4	0	4
(*)The information in the planning table is for	r guidance only and does not	take into account the I	neterogeneity of the stud	dents.

	Methodologies		
Methodologies	Description		
ICT practicals	The students work on their own web-based investigations and present their results to each other (active learnning).		
Guest lecture /	The instructors explain the main contents of each topic interacting as much as possible with the students. The student will be		
keynote speech	able to attend the face-to-face sessions synchronously through TEAMS. Sessions will be recorded for viewing asynchronously.		
Objective test	Test conducted through the Moodle platform to evaluate the knowledge acquired.		

	Personalized attention		
Methodologies	Methodologies Description		
ICT practicals	CT practicals Instructors will typically be available via email/MS TEAMS. Students can arrange for in-person tutoring sessions.		

		Assessment	
Methodologies	Competencies /	Description	Qualification
	Results		

Objective test	A3 A11 B1 C8	In order to pass the subject, all students will have to take a multiple choice test and/or	70
		short-answer questionnaire.	
ICT practicals	A3 A11 B1 B5 B9 C2	All students will have to submit two reports following the guidelines provided by each	30
	C3	instructor. In these reports, students will answer questions and/or solve exercises	
		using their own computer and the software introduced during the computer labs.	

Assessment comments

Students scoring at least 50 (out of 100) points but not reaching the aforementioned thresholds (ICT practicals: 15 out of 30 points; Objective test; 28 out of 70 points) will be awarded a 4.5 (out of 10) score. When resitting, they can choose to take both exams or only the failed one.

Mark "A with distinction" will only be awarded to outstanding students passing the subject in May.

Students will be scored as "ABSENT" (Non presentado) only when not involved in any of the assessed activities.

In the case of exceptional circumstances, lecturers may assist the student to improve his/her learning process and/or catch up on missed work/assessments. The student is responsible for liaising with his/her lecturer to organise this assistance by e.g. applying for: an extended deadline to present his/her work or taking an exam in a different date. The coordinator can request evidence about the reason for such an application. Implications of PLAGIARISM in the qualification: The current UDC regulations will be applied.

	Sources of information
Basic	- McLachlan, G. J., Do, K-A., Ambroise, C (2004). Analyzing Microarray Gene Expression Data. Wiley-Interscience.
	John Wiley & Dons
	- Brown, T. A. (2018). Genomes4. Garland Science
	- E. Rinaldis, A. Lahm. (2007). DNA microarrays: current applications. Wymondham: Horizon Bioscience
	- Bowtell, D., Sambrook, J. (2003). DNA Microarrays. Cold Spring Harbor Laboratory Press.
	- Allison, David B., et al (2006). DNA microarrays and related genomics techniques design, analysis, and interpretation
	of experiments. Chapman & Damp; amp; Hall/CRC
	- Kulkarni, S., Pfeifer, J. (2015). Clinical Genomics. A guide to Clinical NGS. Academic Press, Elsevier
	- Pevsner, J. (2015). Bioinformatics and Functional Genomics. Wiley Blackwell
	- Robison, P.N., Piro, R.M., Jäger, M. (2018). Computational Exome and Genome Analysis. CRC Press, Taylor
	& Francis Group

Complementary

- Dale Jeremy (2008). From genes to genomes: concepst and applications of DNA technology. John Wiley & DNA technology. Sons
- Zhanjiang, Liu (2007). Aquaculture genome techonologies. Blackwell
- Sensen, Christoph W. (2005). Handbook of genome research genomics, proteomics, metabolism, bioinformatics, ethical & proteomics, ethic
- ().

RECURSOS EN INTERNET: Biological database compilation at NAR:

http://nar.oupjournals.org/content/vol29/issue1DOE Joint Genome Institut. Why sequence them? http://www.jgi.doe.gov/sequencing/why/index.htmlEMBL (European Molecular Blology Laboratory), Bioinformatics.

http://www-db.embl.de/jss/servlet/de.embl.bk.emblGroups.EmblGroupsOrg/serv_0?t=0ExPASy (Expert Protein Analysis System). http://us.expasy.org/GeneMark: http://opal.biology.gatech.edu/GeneMark/GenomeNet (Kyoto

University Bioinformatics Center).http://www.genome.jp/Genoscope. Le séquençage des génomes.

http://www.genoscope.cns.fr/externe/Francais/Sequencage/GOLD (Genomes Online Database).

http://www.genomesonline.org/Human genome: advanced annotation

tutorial.http://www.mad-cow.org/00/annotation_tutorial.htmlHuman Genome Project

Information.http://www.ornl.gov/sci/techresources/Human_Genome/home.shtmllañez Pareja, E. (1997). Introducción a los Proyectos Genoma. http://www.ugr.es/~eianez/Biotecnologia/genoma-2.htmlKEGG (Kyoto Encyclopedia of Genes and Genomes). http://www.genome.jp/kegg/kegg2.htmlNacional Human Genome Research Institute:

http://www.genome.gov/NCBI (National Center for Biotechnology Information). http://www.ncbi.nlm.nih.gov/The Sanger Institute.http://www.sanger.ac.uk/TIGR (The Institute for Genomic Research). http://www.tigr.org/tRNAscan-SE 1.21. http://www.genetics.wustl.edu/eddy/tRNAscan-SE/The WWW Virtual Library: Model Organisms:

http://www.ceolas.org/VL/mo/

Recommendations

Subjects that it is recommended to have taken before

Cellular Techniques/610441001

Molecular Techniques/610441002

Genetic Variation Mechanisms/610441005

Regulation of gene expression/610441006

Bioinformatics and Biomolecular models /610441021

Subjects that are recommended to be taken simultaneously

Proteomics/610441014

Chromosomes. structure. function and evolution /610441016

Human Genetics/610441017

Genetic Toxicology /610441018

Subjects that continue the syllabus

Project/610441023

Other comments

Do not take this subject if your level of English is lower than B1.Green

Campus Faculty of Sciences ProgramTo help

achieve a sustainable immediate environment and comply with point 6 of the

"Environmental Declaration of the Faculty of Sciences (2020)", the

documentary works to be carried out in this subject will be requested in

virtual format and computer support.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.