		Teaching	g Guide		
	Identifyir				2021/22
Subject (*)	Advanced Physical Chemistry			Code	610G01020
Study programme	Grao en Química				
		Descri	ptors		
Cycle	Period	Ye	ar	Туре	Credits
Graduate	1st four-month period	Fou	rth	Obligatory	6
Language	SpanishEnglish				
Teaching method	Hybrid				
Prerequisites					
Department	Química				
Coordinador	Iglesias Martinez, Emilia		E-mail	emilia.iglesias@u	dc.es
Lecturers	Brandariz Lendoiro, Maria Isabel		E-mail	i.brandariz@udc.e	es
	Iglesias Martinez, Emilia			emilia.iglesias@u	dc.es
Web	campusvirtual.udc.es				
General description	KEY WORDS: ionic interactions a	and molecular tr	ansport phenor	mena. Rate equation and re	action mechanisms. Chemical
	Kinetic Theories. Homogeneous	catalysis. Introd	uction to electro	ochemical kinetics. Macrom	olecules and colloids.
	Advanced Physical Chemistry a	addresses the p	henomenologic	al study of the interactions	between ions and molecules,
	which allow us to understand the	configuration of	f macromolecul	es of chemical and biologic	al interest. Transport
	phenomena in solution makes po	ssible the chara	acterization of m	nacromolecules and are cer	ntral to the application of certain
	techniques to kinetic study of rea	ctions. Chemica	al kinetics introd	uces the time variable in th	e study of a chemical reaction,
	analyzing the factors that modify	reaction rate in	order to determ	ine the rate equation, and f	inally to propose a reaction
	mechanism at the molecular leve	el to interpret the	observed mac	roscopic reaction.	
Contingency plan	1. Modifications to the contents				
	-No changes will be made				
	2. Methodologies				
	*Teaching methodologies that are maintained:				
	-All				
	*Teaching methodologies that are	e modified:			
	-In case that there are capacity	y problems in the	e space design	ate for the realization of fac	e-to-fase activities, additional
	spaces will be reserved in which	students can fol	low the activitie	s through the TEAMS platf	orm. For the laboratory
	activities, the groups will be unfol	lded to adapt the	e Lab capacity.		
	Mechanisms for personalized a	attention to stud	ents		
	·	Teams			
	, i				
	4. Modifications in the evaluation				
	-No changes.				
	*Evaluation observations:				
	E Modifications to the hillings	hy or waharaali	,		
	1	ny or webgraphy	/		
	-ivo changes				
	*Evaluation observations: 5. Modifications to the bibliograph -No changes	hy or webgraphy	′		

	Study programme competences	
Code	Study programme competences	
A1	A1 Ability to use chemistry terminology, nomenclature, conventions and units	
А3	A3 Knowledge of characteristics of the different states of matter and theories used to describe them	

A4	Knowledge of main types of chemical reaction and characteristics of each
A10	Knowledge of chemical kinetics, catalysis and reaction mechanisms
A14	Ability to demonstrate knowledge and understanding of concepts, principles and theories in chemistry
A19	Ability to follow standard procedures and handle scientific equipment
A20	Ability to interpret data resulting from laboratory observation and measurement
A22	Ability to plan, design and develop projects and experiments
A23	Critical standards of excellence in experimental technique and analysis
A25	Ability to recognise and analyse link between chemistry and other disciplines, and presence of chemical processes in everyday life
A27	Ability to teach chemistry and related subjects at different academic levels
B1	Learning to learn
В3	Application of logical, critical, creative thinking
B4	Working independently on own initiative
C3	Ability to use basic information and communications technology (ICT) tools for professional purposes and learning throughout life
C6	Ability to assess critically the knowledge, technology and information available for problem solving
	•

Learning outcomes			
Learning outcomes	Study	/ progra	amme
	cor	npeten	ces
Methodology:	A3	B1	СЗ
· Be able to plan, design, and perform experiments related to the transport of matter and charge transport.	A4	В3	
· Be able to propose and design a kinetic study of a chemical reaction.	A10	В4	
· Simple software application to the quantitative analysis of kinetic data.	A19		
· Interpretation of kinetic results on the basis of reaction mechanisms.	A20		
· Simulation / prediction of unpublished data from the rate equation	A22		
	A23		
	A27		
Conceptual:	A1	В3	
· Knowledge of interionic interactions and inter-or intramolecular interactions and their relationship with association	A4		
phenomena, self-aggregation or molecular conformation.	A10		
· Mastering the own methods of chemical kinetics. Interpretation at molecular level (mechanistic) of chemical reactions.	A14		
Understand and know the factors that can change the rate of a chemical reaction.			
· Understand the catalysis process and its relation to chemical-, photochemical- or electrochemical-activation			
Attitudinal:	A22	B1	C3
Provide appropriate reports of an experimental study	A23	В3	C6
· Analyze and critique published kinetic studies of low difficulty.	A25	В4	
	A27		

Contents		
Topic Sub-topic		
Ionic and molecular interactions	· Ionic interactions in the liquid phase: activity coefficient. Debye-Hucke's law. Ionic strength.	
	· Molecular interactions. Dipole moment. Polarizability: equation of Clausius-Mossotti.	
	Dipolar interactions. Hydrophobic interaction: self-aggregation and molecular	
	conformation.	
	·Colloids: direct and reverse micelles, biological membranes.	
	Macromolecules	
Transport phenomena	· Flux. Diffusion. Fick's first lay. Stokes-Einstein equation.	
	· Thermal conductivity	
	· Electric conductivity: the Deby-Huckel-Onsager theory.	
	- Viscosity	

Rate equation and reaction mechanism	· Integrated rate equation. Initial rates. Order of reaction. The method of flooding.
	Physical properties in kinetic studies. Experimental techniques.
	· Complex reaction schemes: parallel and concurrent reactions, reversible reactions,
	consecutive reactions.
	· The steady-state approximation.
	· Reaction mechanisms: elementary reactions. Deduction of reaction mechanisms.
Kinetic Theories and their applications	Collisions theory: the frequency factor
	· Transition state theory. The activated complex. Statistical thermodynamics
	approach. Activation parameters. Potential energy surfaces.
	· Reactions in the gas phase: Lindeman mechanism
	· Reactions is solution. Diffusion controlled reactions
	· Photochemical reactions
Catalysis	· Homogeneous, heterogeneous and microheterogeneous catalysis
	· General mechanism of catalysis: rate equations.
	· Homogeneous catalysis: nucleophilic catalysis, acid-base catalysis,
	· Linear free energy relations: the Swain-Scott equation, the Bronsted law, the
	Hammett correlation, the Taft equation.
	· Microheterogeneous catalysis; micellar catalysis, enzyme catalysis.
	· Heterogeneous catalysis: Langmuir isoterm. Rate equations.
Introduction to electrochemical kinetics	· Electrochemical reactions: special topics
	· Interface electrode-solution: the Gouy-Chapman model
	· Rate of charge transfer. The Butler-Volmer equation
	· Voltametry
Lab experiments	· Laboratory experiments relative to Transport phenomena, determination of rate
	equations and catalytic processes.

	Planning			
Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
Guest lecture / keynote speech	A4 A10 A25 A27 B3	21	50	71
Seminar	A1 A4 A10 A14 B1 B3	7	28	35
	C6			
Laboratory practice	A27 A25 A23 A22	20	20	40
	A20 A19 B1 B3 B4 C3			
	C6			
Mixed objective/subjective test	A1 A3 A4 A10 A14	4	0	4
	A20			
Personalized attention		0	0	0

Methodologies		
Methodologies	Description	
Guest lecture /	In the exposition classes the teacher introduces all concepts, models, methodologies and theories of the fundamental contents	
keynote speech	of the discipline program.	
Seminar	This activity will be carried out as interacting classes.	
	Certain concepts will be emphasized through the detailed development of standard exercises and doubts raised by the student	
	will be resolved.	

Laboratory practice	Experiments related to the concepts addressed in the course are carried out. It consists of two phases:
	The first includes the understanding of the experiment/s to be carried out in the Laboratory and the theoretical concepts and
	related techniques, to then begin with the development of the experimental work: planning the experiment, its execution and
	analysis of the results obtained.
	The second consists of the preparation of the Results Report, in which the presentation, methodological justification and
	interpretation, as well as the comparison with bibliographic data, will be assessed.
Mixed	Proposal of questions and exercises, related with the concepts introduced in the classes of theory, seminar or in Lab
objective/subjective	experiments, to solve. The student alone will demonstrate, during a fixed time interval, the acquired knowledge and his
test	capacity for solving exercises and/or developing conceptual questions.

	Personalized attention
Methodologies	Description
Seminar	It recommends to the students the use of tutorials to solve all kind of doubts, questions and concepts that have not remained
Laboratory practice	sufficiently clear, and that refer, either to the development of material concepts or to find the answers to problems introduced
	in the seminars, laboratory practices or in the preparation of the final test. The teachers will be available to solve any question
	about the contents of the subject at the established timetable.
	Students with a waiver for academic assistance will have both face-to-face and e-mail tutorials or Teams, whenever
	necessary.
	Before carrying out the experimental laboratory work, the student must demonstrate an understanding of the scientific article
	that describes the experience to be reproduced. During the development of the experiment, the student is advised on the
	complications that may arise. After it, the teachers will guide each student in the interpretation of the results, based on the
	theoretical models developed in the classroom for the quantitative treatment of the results.

Assessment			
Methodologies	Competencies	Description	Qualification
Laboratory practice	A27 A25 A23 A22	In the evaluation of this activity, the laboratory work and the Results Report are taken	20
	A20 A19 B1 B3 B4 C3	into account:	
	C6	-Interview in the Laboratory, prior to the development of the experiment, which	
		reflects the understanding of the chemical system, the methodology to be applied, the	
		technique used and the necessary safety.	
		-Development of the experiment in the Laboratory: planning, data collection and their	
		analysis.	
		-Report of results that will be evaluated in terms of presentation, quantitative	
		treatment and explanation of the results based on theoretical models	
Mixed	A1 A3 A4 A10 A14	Written examination to answer theoretical questions and solve exercises related to	80
objective/subjective	A20	the contents of the lectures, seminars and Lab experiments.	
test		It is required to carry out the Lab practices and pass the mixed test to pass the	
		course. The qualification of a surpassed activity will be kept in the remaining	
		opportunities of the current academic year (second opportunity).	
		If the mixed probe is not passed, even if the average qualification of all activities is	
		higher than 5, the numerical mark that appears in the "Acta" will be score	
		obtained in the mixed test.	
		The student will obtain the qualification of Not Presented when he/she does not carry	
		out the Laboratory classes and, therefore, does not appear for the final examination	
		either.	
		Students who request an early call for December will be governed by the present	
		teaching guide.	

Assessment comments

- -Attendance to all laboratory practices and delivery of the corresponding report are required, either for partial-time student or for full-time student.
- -Attendance to seminars is not mandatory for students with academic exemption. -To pass the course it will be necessary to obtain a mark not lower than 5.0 out of 10 in all valuable activities and achieve a minimum qualification of 5.0 in the proportional sum of all the activities.
- -The qualification of "Matricula" is preferably granted at the first opportunity. -Second Opportunity: repetition of the exam upon contents of seminars, lab practical and theory clases.

	Sources of information
Basic	- P. W. Atkins, J. de Paula (2008). Química Física, 8ª Ed Panamericana
	- Espenson J. H. (1995). Chemical kinetics and reaction mechanisms 2 ^a ed McGraw-Hill, New York.
	- Laidler K. J. (1994). Chemical Kinetics . Harper and Row, New York.
	- Bockris, J.O.M., Reddy, A K.N. (1998). Modern Electrochemistry 1. Ionics. 2nd ed Plenum Press, New York
	- P. W. Atkins, J. de Paula (2010). Physical Chemistry, 9th Ed Oxford University Press
Complementary	- P. L. Brezonik (1994). Chemical Kinetics and Process Dynamic in Aquatic Systems Lewis Publishers
	- P. Sanz Pedredo (1992). Físicoquímica para Farmacia y Biología Masson-Salvat Medicina
	- R. A. Jackson (2004). Mechanism in Organic Reactions Royal Society of Chemistry (RSC)
	- LEVINE I. N. (2004). Fisicoquímica 5ª ed McGraw-Hill, Madrid
	- KORITA, J, DVORAK, J., KAVAN, L. (1987). Principles of Electrochemistry. 2nd ed Wiley, Chichester
	- BERRY R. S., RICE S. A., ROSS J. (2000). Physical Chemistry. 2 ^a ed Oxford University Press, New York
	- J. BERTRAN-RUSCA, J. NUÑEZ-DELGADO Eds , (2002). Química Física, vol. II. Ariel Ciencia
	- S. R. Logan (2000). Fundamentos de Cinética Química. Addison Wesley
	- BOCKRIS, J.O.M., REDDY, A.K.N., GAMBOA-ADELCO, M.E. (2000). Modern Electrochemistry 2A. Fundamental
	of Electrodics Kluwer Academic/Plenum Press: New York

Recommendations	
Subjects that it is recommended to have taken before	
General Chemistry 1/610G01007	
General Chemistry 2/610G01008	
General Chemistry 3/610G01009	

Chemistry Laboratory 1/610G01010 Physical Chemistry 1/610G01016

Physical Chemistry 2/610G01017

Physical Chemistry 3/610G01018

Experimental Physical Chemistry/610G01019

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Other comments

Prerequisites: -They are necessary the knowledges of Chemistry and Physical Chemistry materias -To know draft, synthesize and correctly present a work. -To dominate the graphic representation, linear regression with basic knowledges of statistics. -To use at basic level tools of computing, such as Excel, Word, Power Point. -It recommends to know English of intermediate level (reading).

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.