

		Teaching	g Guide		
	Identifyi	ng Data			2021/22
Subject (*)	Autonomous Marine Vehicles			Code	730542017
Study programme	Master Universitario Erasmus Mundus en Sostibilidade e Industria 4.0 aplicada ao S			.0 aplicada ao Sector	Marítimo
		Descri	ptors		
Cycle	Period	Yea	ar	Туре	Credits
Official Master's Degre	ee 2nd four-month period	Fire	st	Optional	6
Language	English				
Teaching method	Face-to-face				
Prerequisites					
Department	Ciencias da Computación e Tecr	noloxías da Infor	maciónMatemática	S	
Coordinador	Bellas Bouza, Francisco Javier		E-mail	francisco.bellas@	@udc.es
Lecturers	Bellas Bouza, Francisco Javier		E-mail	francisco.bellas@	@udc.es
	Orjales Saavedra, Félix			felix.orjales@udo	c.es
Web	http://www.master-seas40.unina	.it			
General description	The main objective of the course	is to provide the	e students with an u	pdated vision of autor	nomous robotics, and specially
	about intelligent control systems.	In addition, it wi	ill also provide a ted	chnical and regulatory	approach to the field of robotics
	within the marine framework. In order to obtain these goals, and apart from the theoretical basis, students will				
	simulated and real marine vehicle	es, thus develop	ing the skills neede	d to tackle the implem	nentation of real autonomous
	marine robots.				

Contingency plan

- 1. Modifications to the content
- No changes will be made
- 2. Methodologies

Teaching methodologies that are maintained

- Supervised work

Teaching methodologies that are modified

- Mixed objective/subjective test: using Microsoft Teams or equivalent institutional application
- ICT Practical sessions: using Microsoft Teams or equivalent institutional application, and using appropriate programming software that will be provided to students
- Master class: carried out through Microsoft Teams or equivalent institutional application, also leaving the students or their content in video format for later viewing
- Field trip: this methodology will be eliminated
- 3. Mechanisms for personalized attention to students
- Email: Daily. Used to make queries, request virtual meetings to resolve doubts and perform or follow up on the work being protected.
- Moodle: Daily. According to the needs of the students, who have forums in which they can export questions in general to the rest of the group.
- Teams: 1 class per week for big group to advance in the theoretical concepts and for the ICT sessions, using the hours originally scheduled in the School calendar. In addition, this tool will be used for the resolution of personalized questionnaires with students, preferably during class hours. This contact can be through chat or call, which is more appropriate to resolve the query.
- 4. Modifications in the evaluation
- The percentage of the Field Trip methodology will be added to the Supervised Work one, that will imply a 70% of the assessment

Evaluation observations:

- Keep to the percentages of all methodology in the assessment
- 5. Modifications of the bibliography or webgraphy
- No changes will be made

	Study programme competences / results
Code	Study programme competences / results
A4	CE4 ? Demonstrate knowledge, understanding and competences in the field of design and operation of robots and marine autonomous
	vehicles (RAS).
B2	CB6 - Acquire and understand knowledge that provides a basis or opportunity to be original in the development and / or application of
	ideas, usually in a research context.
В3	CB7 - That students know how to apply the acquired knowledge and their ability to solve problems in new or unfamiliar environments
	within broader (or multidisciplinary) contexts related to their area of study.

B4	CB8 - That students are able to integrate knowledge and face the complexity of making judgments based on information that, being
	incomplete or limited, includes reflections on the social and ethical responsibilities linked to the application of their knowledge and
	judgments.
B5	CB9 ? That students are able to communicate their conclusions -and the knowledge and ultimate reasons that sustain them- to specialized
	and non-specialized publics in a clear and unambiguous way.
B6	CB10 - That students have the learning skills that allow them to continue studying in a way that will be largely self-directed or autonomous.
B7	CG1 ? To display the adequate intercultural competence to successfully navigating within multicultural learning environments and to
	implement basic management principles suitable for a multicultural working environment.
B8	CG2 ? To express an attitude of intellectual inquisitiveness and open-mindedness.
В9	CG3 ? To have the capability to use knowledge, skills, ideas, theory, and modern engineering concepts to create new or significantly
	improved real engineering applications.
B11	CG5 ? To have the capability to identify, formulate and solve engineering problems within realistic constraints.
B13	CG7 ? To have the capability to critically analyse, synthesise, interpret and summarise complex scientific processes.
C2	CT2 - Mastering oral and written expression in a foreign language.
C3	CT3 - Using ICT in working contexts and lifelong learning.
C4	CT4 - Acting as a respectful citizen according to democratic cultures and human rights and with a gender perspective.
C6	CT6 - Acquiring skills for healthy lifestyles, and healthy habits and routines.
C7	CT7 -Developing the ability to work in interdisciplinary or transdisciplinary teams in order to offer proposals that can contribute to a
	sustainable environmental, economic, political and social development.
	I.

Learning outcomes			
Learning outcomes		Study programme	
	cor	npetenc	es/
		results	
Capacity for applying mathematical and ICT methods and tools to define, design, operate and maintain advanced marine		BC1	CC2
robotic systems and for understanding and developing the needed algorithms and methods.		BC2	CC3
		BC3	CC4
		BC4	CC6
		BC5	CC7
		BC6	
		BC7	
		BC10	
		BC12	
Understanding the difference between autonomous and non-autonomous operation in robotics, and how it fits into the Artificial	AC4	BC3	CC4
Intelligence field		BC5	
		BC7	
		BC12	
Acquiring the knowledge about sensors and actuators relevant in marine vehicles to provide them with autonomous	AC4	BC1	CC4
capabilities		BC3	CC6
		BC5	CC7
		BC7	
		BC12	
Understanding the fundamentals of autonomous robotic control, and how classical techniques are very important to achieve a	AC4	BC1	CC3
proper response. Being able to apply these concepts in navigation tasks		BC2	CC4
		BC3	CC6
		BC5	CC7
		BC7	
		BC12	

Capacity for using a marine vehicle simulator and programming it, including all the previous knowledge about sensors,	AC4	BC2	CC3
actuators and autonomous/classical control		ВС3	CC6
		BC5	CC7
		BC6	
		BC7	
		BC8	
		BC10	
		BC12	

	Contents
Topic	Sub-topic
Topic 1. Introduction to autonomous vehicles	- Artificial Intelligence
	- Autonomous robots
	- Autonomous vehicles
Topic 2. Sensors and actuators in marine vehicles	- Sensors:
	Sound based (Sonar, DVL, range finders)
	Vision and laser based (Cameras, LIDAR)
	Inertial Measurement Units (IMU)
	GNSS and alternative positioning systems
	- Actuators:
	Thrusters and alternative propulsion methods
	Arms and grippers
Topic 3. Autonomous control	- Open loop control
	- Closed loop control
	- PID
	- Intelligent architectures
	Reactive
	Deliberative
	Hybrid
Topic 4. Autonomous navigation	- Localization
	- Mapping
	- Path planning
Topic 5. Programming underwater vehicles	- Gazebo simulation model
	- Programming framework
	- Real underwater vehicle

	Planning	g		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
ICT practicals	B3 B6 B8 C6 C3	18	18	36
Guest lecture / keynote speech	B2 B4 B6 C4 C6	18	9	27
Supervised projects	A4 B3 B4 B5 B6 B7	0	55	55
	B8 B9 B11 B13 C2			
	C3 C7			
Field trip	A4 B3 B7 B9 B11 B13	4	8	12
	C7 C4			
Mixed objective/subjective test	A4 B4 B5 B6 B11 B13	2	16	18
	C2			
Personalized attention		2	0	2
(*)The information in the planning table is fo	r guidance only and does not	take into account the l	neterogeneity of the stud	lents.

	Methodologies
Methodologies	Description
ICT practicals	Practical classes carried out in the ICT lab, with the objective of learning how to program an autonomous marine vehicle (real or simulated) to develop a simple mission. In these classes, the teacher will help students to properly understand the topics
Guest lecture / keynote speech	Masterclass where teachers explain the theoretical concepts of the topics, and students can ask questions.
Supervised projects	Autonomous work where students must solve some challenge involving programming an autonomous marine vehicle to solve a task. There can be one of incremental complexity or more than one with independent objectives. In this methodology, students will be organised in groups, so they will have to collaborate to achieve the goal.
Field trip	A field trip will be made to the UDC ship model basin to collect data on navigation tests of autonomous marine vehicles.
Mixed objective/subjective test	Written or oral examination where students will show their understanding of the theoretical concepts of the subject.

	Personalized attention		
Methodologies Description			
ICT practicals	In the practical workshops, the teacher will supervise the students' progress and help them with all the issues that could arise		
Supervised projects			
	In the supervised projects, students will have the option of asking their questions and doubts to the teachers while developing		
	their project autonomously.		

		Assessment	
Methodologies Competencies /		Description	
	Results		
Mixed	A4 B4 B5 B6 B11 B13	Students will have to show their knowledge and understanding of the theoretical	30
objective/subjective	C2	concepts of the subject by means of a written or oral activity	
test			
Supervised projects	A4 B3 B4 B5 B6 B7	One or more projects will be proposed throughout the course focused on solving	60
	B8 B9 B11 B13 C2	realistic problems with autonomous marine problems using real or simulated robots.	
	C3 C7	These tasks will be developed autonomously by the student outside the classroom	
		and must be defended in front of the teachers.	
Field trip	A4 B3 B7 B9 B11 B13	The correct preparation, execution and understanding of the field trip will be assessed	10
	C7 C4	by the teachers of the subject. Students must prepare a report which will be evaluated.	

Assessment comments

In order to pass this subject, a minimum score of 50 must be obtained by adding all the above methodologies, there being no minimum in any of them. If the student does not pass the subject in the ordinary exam, he/she will have to repeat the necessary activities of the methodology/s that were not passed in the extraordinary exam.

General EMJMD Sustainable Ship and Shipping SEAS 4.0 evaluation rules:

- Students will have only two oportunities to pass a course. If failing to do so, they may be forced to leave the degree.
- No part time or lecture attendance exemption are allowed in this degree.

Sources of information

Basic	- Thor I. Fossen (2011). Handbook of Marine Craft Hydrodynamics and Motion Control. John Wiley & Dons
	- Geoff Roberts and Robert Sutton (2006). Advances in unmanned marine vehicles. Institution of Engineering and
	Technology
	- Robin R. Murphy (2000). Introduction to Al Robotics. A Bradford Book
Complementary	- Joseph, Lentin (2015). Learning robotics using Python : design, simulate, program, and prototype an interactive
	autonomous mobile robot from scratch with the help of Python, ROS, and Open-CV. Packt Publishing

	Recommendations	
	Subjects that it is recommended to have taken before	
Regulatory Framework for Marit	me Industry 4.0/730542001	
Robotics & Underwater Robotics	7/730542007	
	Subjects that are recommended to be taken simultaneously	
Industrial Internet of Things (IIo	7)/730542015	
Industry 4.0 Enabling Technolog	ies/730542010	
	Subjects that continue the syllabus	

Other comments

To help in achieving a sustainable environment and to get the objective of number 5 action of the "Ferrol Green Campus Action Plan" (Healthy and environmentaly and socially sustainable research and teaching): The assignments to be done in this course: Will be required in digital format. Will be delivered using Moodle, with no need to print them. In case it is necessary to print them: Plastics won't be used. Two side printing will be used. Recycled paper will be used. Printing drafts will be avoided. A sustainable use of the resources should be done, together with the prevention of negative impacts on the environment. Anbsp;

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.