

		Teaching Guide			
	Identifying I	Data			2022/23
Subject (*)	Genetics			Code	610G02019
Study programme	Grao en Bioloxía				
		Descriptors			
Cycle	Period	Year		Туре	Credits
Graduate	2nd four-month period	Second		Obligatory	6
Language	SpanishGalicianEnglish				
Teaching method	Face-to-face				
Prerequisites					
Department	Bioloxía				
Coordinador	Vila Taboada, Marta	E	-mail	marta.vila.taboa	ada@udc.es
Lecturers	Mallo Seijas, Natalia E-mail		-mail	natalia.mallo@udc.es	
	Martinez Martinez, M. Luisa			m.l.martinez@u	ldc.es
	Torrado Blanco, Laura			laura.torrado@u	udc.es
	Vila Sanjurjo, Antón			anton.vila@udc	.es
	Vila Taboada, Marta			marta.vila.taboa	ada@udc.es
Web					
eneral description	This subject's conceptual focus emphasizes the fundamental ideas of Genetics: the basics of heritable traits and an				
	introduction to methodologies used in this discipline. By passing Genetics, students will prove to have acquired the				
	theoretical knowledge and analytical skills needed to take the following subjects: Molecular Genetics (3rd year,				
	compulsory), Population and Evolutionary Genetics (3rd year, compulsory), and Cytogenetics (4th year, optional).				

	Study programme competences / results
Code	Study programme competences / results
A1	Recoñecer distintos niveis de organización nos sistemas vivos.
A2	Identificar organismos.
A4	Obter, manexar, conservar e observar especímenes.
A11	Identificar e analizar material de orixe biolóxica e as súas anomalías.
A12	Manipular material xenético, realizar análises xenéticas e levar a cabo asesoramento xenético.
A20	Muestrear, caracterizar e manexar poboacións e comunidades.
A26	Deseñar experimentos, obter información e interpretar os resultados.
A29	Impartir coñecementos de Bioloxía.
A30	Manexar adecuadamente instrumentación científica.
A31	Desenvolverse con seguridade nun laboratorio.
B1	Aprender a aprender.
B2	Resolver problemas de forma efectiva.
B3	Aplicar un pensamento crítico, lóxico e creativo.
B4	Traballar de forma autónoma con iniciativa.
B5	Traballar en colaboración.
B6	Organizar e planificar o traballo.
B8	Sintetizar a información.
B9	Formarse unha opinión propia.

Learning outcomes			
Learning outcomes	Study programme		
	competences /		
	results		

Mendelian genetic analysis: the gene as unit of inheritance	A1	B1	
	A12	B2	
	A26	B3	
	A29	B5	
	A30		
	A31		
To study the chromosomal basis of inheritance, sex determination, extranuclear inheritance as well as genetic linkage and	A1	B1	
recombination.	A4	B2	
	A12	B3	
	A26	B4	
	A29	B5	
	A30	B6	
	A31	B9	
To learn about changes in the genetic material	A2	B1	
	A11	B2	
	A26	B3	
	A29	B5	
		B9	
To set the basis of quantitative and population genetics	A1	B1	
	A20	B2	
	A26	B3	
	A29	B5	
	A30	B6	
	A31	B8	

	Contents
Торіс	Sub-topic
1. Introduction to Genetics	Definition of Genetics
	History of Genetics
	Genetics and other sciences
	Genetics and society
2. Mendelian Genetics	Mendel?s experiments: mono and dihibrid crosses
	Concept of geno and phenotype
	Terms and symbols
	Pedigree analysis
3. Chromosomal Basis of Inheritance and Sex Determination	Genetic implications of mitosis and meiosis
	Chromosomal theory of inheritance
	Sex determination
	Sex-linked inheritance
	Sex-limited and sex-influenced traits
	Gene dosage compensation
4. Extensions of and Deviations from Mendelian Genetic	Modification of dominante relationships
Principles	Multiple alleles
	Lethality
	Penetrance and expressivity
	Pleiotropy
	Gene interaction and epistasis
	Position effect
	Environmental interactions

Linkage, recombination and mapping of genes on chromosomes
Interference and coincidence
Genetic map function: connecting recombination fractions and genetic map distances
Bacterial transformation
Bacterial conjugation: plasmids and episomes
Generalized and specialized transduction
Genetic recombination in bacteriophages. Fine structure of the gene: rll system of
phage T4
Maternal effect
Maternal inheritance
General features of mitochondrial and chloroplast genomes
Heteroplasmy
Infectious heredity Output to the test
Quantitative traits
Genes and environment
Phenotypic distribution and norms of reaction
Genetic basis of quantitative traits: Johannsen?s experiment
Polygenic inheritance: Nilsson-Ehle?s experiment
Heritability
Mendelian population
Genetic variation
Allele and genotype frequencies
Random mating and Hardy-Weinberg equilibrium
Evolutionary forces: mutation, migration, random drift, and selection
Genome size: the C-value paradox
Bacterial chromosomes
Eukaryote chromosomes
DNA packaging: Nucleosomes and Chromatin
Centromeres and Telomeres
Lampbrush and polytene chromosomes
Karyotype
Random and adaptive mutation
Mutant types
Spontaneous and induced mutation
Detecting mutagens: the Ames test
Deletions
Duplications
Inversions
Translocations
Robertsonian fusions/dissociations
Robertsonian fusions/dissociations Euploidy and aneuploidy
Euploidy and aneuploidy
Euploidy and aneuploidy Monoploidy
Euploidy and aneuploidy Monoploidy Polyploidy: Autopolyploidy and Allopolyploidy

Teaching labs	Lab 1. GENETIC ANALYSIS IN CORN (Zea mays): INTERACTION AND EPISTASIS.
	Description of shape and colour of F2 seeds (kernel) obtained from different crosses
	Hypothesis testing (chi-square)
	Inference of genotype and phenotype of generations P and F1
	Genetic and Biochemistry basis of the observed phenotypes
	Lab 2. SETTING UP EXPERIMENTS USING Drosophila sp.
	Raising and handling Drosophila in the lab
	Life cycle
	Analysing fruit flies: distinguishing sex, why isolating virgin females, observation of
	some mutant phenotypes
	Lab 3. LINKAGE MAPPING IN Drosophila sp.
	Reciprocal crosses between wild and three-factor mutant (yellow, white y miniature)
	Analysis of Offspring (F1)
	Testcrosses, analysis of offspring (F2) and statistical approach to determine the
	linkage order and map distances between the three loci on Drosophila chromosomes
	(calculation of frequencies of recombination, coincidence coefficient and interference)
	Lab 4. POLYTENE CHROMOSOME OF THE SALIVARY GLANDS OF Drosophila sp.
	Extraction of larval salivary glands
	Staining with orcein
	Examination of the slides under the microscope
	Lab 5. COMPUTER LAB.
	Introduction to bioinformatics databases and resources offered through the NCBI
	Getting familiar with the following databases: PUBMED, BOOKS, TAXONOMY,
	OMIM.

	Planning	g		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Laboratory practice	A2 A4 A11 A12 A26	15	22.5	37.5
	A30 A31 B1 B2 B3 B4			
	B5 B6			
Mixed objective/subjective test	B1 B2 B3 B8 B9	2.5	0	2.5
Supervised projects	A1 A12 A26 A29 B1	8	16	24
	B2 B3 B4 B5 B6 B8			
	В9			
Guest lecture / keynote speech	A1 A11 A12 A20 A26	24	60	84
	A29 B1 B2 B3			
Personalized attention		2	0	2
(*)The information in the planning table is fo	r guidance only and does not	take into account the I	neterogeneity of the stud	lents.

Methodologies				
Methodologies	Description			
Laboratory practice				
	The teaching labs are designed to allow groups of students to work side by side in order to (i) better comprenhend certain			
	issues of the syllabus and (ii) see ?real? science as approachable, accessible and exciting.			
	Each lab relies on a theoretical basis (teacher explanation + reading assignment) and a hands-on activity.			

Mixed	The final exam is usually composed by questions/essays to assess theorecial knowledge and a set of problems/exercises.
objective/subjective	
test	
Supervised projects	Group work: students will be assigned a maximum of four sets of genetic problems, whose written solutions have to be handed
	in for evaluation by certain deadlines. Additional group activities may be assigned for the sake of a better comprehension of
	particular issues.
Guest lecture /	Master class and reading groups: the teacher will explain the main contents of each lesson and will assign texts for further
keynote speech	reading. Working with small groups will allow the exchange of ideas among students, under direct supervision of the lecturer.

	Personalized attention		
Methodologies	Description		
Supervised projects All students are welcome to receive regular tuition in both theory and practical issues of the subject. Individual or group			
	appointments may be arranged with the teacher.		

		Assessment	
Methodologies	Competencies /	encies / Description	
	Results		
Mixed	B1 B2 B3 B8 B9	The final exam (test, short-answer, set of problems) aims at evaluating student's	60
objective/subjective		performance by (i) showing his/her understanding of theoretical concepts, (ii)	
test		developing problem-solving strategies, and (iii) communication skills.	
Laboratory practice	A2 A4 A11 A12 A26	Laboratory attendance is mandatory. Pass mark of 50% in the corresponding lab test.	20
	A30 A31 B1 B2 B3 B4	Grading will reflect the students' comprehension of the topic, their analytical skills, as	
	B5 B6	well as how well the document is written and presented.	
Supervised projects	A1 A12 A26 A29 B1	Supervised projects are not mandatory in order to pass the subject. Grading will reflect	20
	B2 B3 B4 B5 B6 B8	the students' comprehension of the topic, their analytical skills, as well as how well the	
	B9	assignment is written and presented.	

Assessment comments

To pass the subject, students must score at least 50% pass in Laboratory Practice as well as 50% in Mixed objective/subjective test. The Mixed objective/subjective test (final exam) will include both theory and exercises. Students should score at least 50% in the theory part to add points for their solutions to exercises.

If the cumulative final score is 5.0 or higher, but the student failed either the Mixed objetive/subjective test and/or the laboratory exam (50% pass mandatory in both of them), the grade report will read 4.5 (fail).

Having said this, students with scores [4.5-4.9] in Laboratory Practice may pass the subject if their score in the Mixed objective/subjective test is 5.0 or higher and the final cumulative result is 5.0 or higher.

Students with scores [4.5-4.9] in the Mixed objective/subjective test may pass the subject if their score in Laboratory Practice is 5.0 or higher and he final cumulative result is 5.0 or higher. In this case, even if the final cumulative result is higher than 5.0 the final grading will be 5.0.

Pass marks (5.0 or higher) obtained in Laboratory Practice will be kept for the July examination session and the two opportunities of the next academic year if scored at least 50% pass. For example, someone who pass his/her labs in 1st opportunity of year 2020/21 may keep that mark until the July examination session of year 2021/22. Also, if he/she passed the lab exam in the 2nd opportunity of year 2020/21, that result will also be kept until the July examination session of year 2021/22.

Pass marks (5.0 or higher) obtained in the Mixed objective/subjective test (1st opportunity) will be kept for the July examination session (2nd opportunity) but never for the next academic year.

Official withdraw from the course is only possible if the student attends neither Mixed objective/subjective test (final exam) nor the Laboratory Practice exam.

Part-time students or students who participate in equality and diversity

support programs are welcome to participate in this subject. The

teachers will adapt the different compulsory activities in order to

enable these students to fulfil the aims of the course.

If the university discovers a case of fraud or plagiarism in any exam or assignment, the student will fail the whole subject or just the assignment (respectively) as stated in the academic rules and regulations of our university.

Sources of information	
Basic	Griffiths AJF et al. (2012) Introduction to Genetic Analysis. WH Freeman, New York LibroKlug WS, Cummings MR
	(2011) Essentials of Genetics. Pearson, San Francisco LibroPierce BA (2011) Fundamentos de Genética: Conceptos
	y Relaciones. Editorial Médica Panamericana, Buenos Aires LibroPierce BA (2008) Genetics: A Conceptual Approach.
	WH Freeman, New York LibroRussell PJ (2010) iGenetics. A Molecular Approach. 3rd edition. Pearson International
	Edition

Complementary	Atherly, A.G., Girton, J.R. & amp; McDonald, J.F. 1999. The Science of Genetics. Saunders College Publishing, Fort
	Worth, USA.Brooker, R.J. 2005. Genetics: Analysis and Principles (2nd ed). McGraw-Hill, Boston, USA.Falconer, D.S.
	& Mackay, T.F.C. 2000. Introducción a la Genética Cuantitativa. Acribia, Zaragoza. Gardner, E.J., Simmons, M.J.
	& Snustad, D.P. 1998. Principios de Genética (4ª ed). México DF, México. Griffiths, A.J.F., Gelbart, W.M., Miller
	J.H. & amp; Lewontin, R.C. 2000. Genética Moderna. Interamericana-McGraw-Hill, Madrid.Lodish, H., Berk, A.,
	Zipursky, S.L., Matsudaira, P., Baltimore, D. & amp; Darnell, J. 2000. Biología celular y Molecular (4ª ed).
	Panamericana, Madrid.Pierce, B.A. 2006. Genética. Un enfoque conceptual (2ª ed.) Editorial Médica Panamericana,
	Buenos Aires.Russell, P.J. 2002. iGenetics. Benjamin Cummings, San Francisco, USA.Snustad, D.P. & amp;
	Simmons, M.J. 2006. Principles of Genetics (4ed). John Wiley & amp; Sons, Inc. New York, USA. Tamarin, R.H. 2002.
	Principles of Genetics (7th ed.). McGraw-Hill, Boston, USA.Bibliografía de ProblemasBenito Jiménez, C. 1997. 360
	Problemas de Genética Resueltos Paso a Paso. Síntesis, Madrid. Jiménez Sánchez, A. 2001. Problemas de Genética
	para un Curso General (2ª ed). Servicio de Publicaciones Universidad de Extremadura, Cáceres.Lacadena, J.R.,
	Benito, C., Díez, M., Espino, F.J., Figueiras, A.M., Ochando, M.D., Rueda, J., Santos, J.L., Sendino, A.M., Vázquez,
	A.M. & amp; Vega, C. 1998. Problemas de Genética para un Curso General. Alhambra, Madrid. Ménsua, J.L. 2003.
	Genética. Problemas y ejercicios resueltos. Pearson Prentice Hall, Madrid.Ochando, D. 1990. Genética poblacional,
	evolutiva, cuantitativa. Problemas. Eudesa Universidad, Madrid.Tormo Garrido, A. 1998. Problemas de Genética
	Molecular. Editorial Síntesis, Madrid. Viseras Alarcón, E. 1998. Cuestiones y Problemas Resueltos de Genética (2ª
	ed). Universidad de Granada, Granada. Recursos web Acompañamiento electrónico de
	librosHTTP://WWW.WHFREEMAN.COM/MGA/. Modern Genetic Analysis y An Introduction to Genetics
	Analysishttp://www.ultranet.com/~jkimball/BiologyPages/ Versión online del libro de Biología de JW Kimball.
	http://www.mhhe.com/tamarin7. Sitio web con problemas, ejercicios y links a otras páginas.Animaciones e
	ilustracioneshttp://www.dnaftb.org/dnaftb/ DNA from de beginning. Conceptos básicos de la herencia y biología
	molecular.Cursos de Genética onlinehttp://www.ndsu.nodak.edu/instruct/mcclean/plsc431/431g.htmBases de datos y
	herramientas bioinformáticashttp://www.ncbi.nlm.nih.gov/ National Centre for Biotechnology Information (NCBI) de
	USA.http://www.udc.es/biblioteca/ Biblioteca de Universidade da Coruña.Diccionarios, atlas y glosariosKing, R.C.
	& Stansfield, W.D. 1990. A dictionary of genetics (4th ed.) Oxford Unversity Press, New York, USA.Passarge, E.
	2001. Color Atlas of Genetics (2nd ed). Thieme, Stuttgart, Germany.Rieger, R., Michaelis, A. & amp; Green, M.M.
	1991. Glossary of genetics. Clasical and molecular (5th ed). Springer-Verlag, Heidelberg, Germany.

Recommendations

Subjects that it is recommended to have taken before

Statistics/610G02005

Biology: Basic Levels of Organisation of Life I (Cells)/610G02007 Biology: Basic Levels of Organisation of Life II (Tissues)/610G02008 Biochemistry I/610G02011

Subjects that are recommended to be taken simultaneously

Subjects that continue the syllabus

Molecular Genetics/610G02020

Population Genetics and Evolution/610G02021

Cytogenetics/610G02022

Other comments

Attending class regularly is one strategy to maintain satisfactory academic progress. Relying on Moodle notes is not enough to pass at the higher education level!Asking questions in class if you do not understand the material presented.The more you read, do homework, participate in class, the more familiar you will become with content, which is a strategy to help you pass.You will also be expected to read other materials in addition to the textbook to give you differing viewpoints and to develop your critical thinking.You are most welcome to set up meetings with your instructors to discuss any issue about the subject.GREEN CAMPUS strategy:assignments for this subject will be preferably handed in as digital documents. In the case that any assignment is required to be submitted in paper, students will (1) avoid the use of plastic, (2) use both sides of the paper sheet, and (3) use recycled paper. Instructors will discourage the handing of paper drafts.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.