| | | Teachin | g Guide | | | |---------------------|--|-------------------|--------------------|-------------------------|--------------------------------| | | Identifyir | ng Data | | | 2022/23 | | Subject (*) | Edaphology | | | Code | 610G02045 | | Study programme | Grao en Bioloxía | | | | ' | | | | Descr | iptors | | | | Cycle | Period | Ye | ar | Туре | Credits | | Graduate | 2nd four-month period | Fou | ırth | Optional | 6 | | Language | English | | | | | | Teaching method | Face-to-face | | | | | | Prerequisites | | | | | | | Department | Física e Ciencias da Terra | | | | | | Coordinador | Paz Gonzalez, Antonio | | E-mail | antonio.paz.gor | nzalez@udc.es | | Lecturers | , | | E-mail | eliana.cardenas | @col.udc.es | | | Lado Liñares, Marcos | | | marcos.lado@u | idc.es | | | López Vicente, Manuel | | | manuel.lopez.vi | cente@udc.es | | | Paz Gonzalez, Antonio | | | antonio.paz.gor | nzalez@udc.es | | | Vidal Vázquez, Eva | | | eva.vidal.vazqu | ez@udc.es | | Web | | | | | | | General description | The program of Soil Science focu | uses on: a) the s | study of the organ | ic and mineral soil com | position, b) soil physical and | | | chemical and biological properties, c) ecological relevance of soil functions. | | | | | | | Study programme competences | |------|--| | Code | Study programme competences | | A6 | Catalogar, avaliar e xestionar recursos naturais. | | A20 | Muestrear, caracterizar e manexar poboacións e comunidades. | | A21 | Deseñar modelos de procesos biolóxicos. | | A22 | Describir, analizar, avaliar e planificar o medio físico. | | A23 | Avaliar o impacto ambiental. Diagnosticar e solucionar problemas ambientais. | | A24 | Xestionar, conservar e restaurar poboacións e ecosistemas. | | A26 | Deseñar experimentos, obter información e interpretar os resultados. | | A27 | Dirixir, redactar e executar proxectos en Bioloxía. | | A28 | Desenvolver e implantar sistemas de xestión relacionados coa Bioloxía. | | A30 | Manexar adecuadamente instrumentación científica. | | A31 | Desenvolverse con seguridade nun laboratorio. | | A32 | Desenvolverse con seguridade no traballo de campo. | | B1 | Aprender a aprender. | | B2 | Resolver problemas de forma efectiva. | | В3 | Aplicar un pensamento crítico, lóxico e creativo. | | B6 | Organizar e planificar o traballo. | | B7 | Comunicarse de maneira efectiva nunha contorna de traballo. | | B8 | Sintetizar a información. | | B9 | Formarse unha opinión propia. | | B10 | Exercer a crítica científica. | | B11 | Debater en público. | | B12 | Adaptarse a novas situacións. | | Learning outcomes | | | |-------------------|-----------------|--| | Learning outcomes | Study programme | | | | competences | | | | A6 | | |---|-----|-----| | Assessment of environmental impact taken into account soil diversity. Evaluation of soil contamination and techniques for soil restoration. | A22 | | | | A21 | B1 | | Assessment of environmental impact taken into account soil diversity. Evaluation of soil contamination and techniques for soil restoration. | A26 | В3 | | The scientific study of the soil is important for Biologists, mainly from an ecological perspective. Soil is essential in | A21 | B2 | | environmental studies and soil science contributes to understand important processes such as biogeochemical cycles, the | A22 | | | structure ecosystems and factors from which primary production depends. | A30 | | | The scientific study of the soil is important for Biologists, mainly from an ecological perspective. Soil is essential in | A20 | B2 | | environmental studies and soil science contributes to understand important processes such as biogeochemical cycles, the | A31 | | | structure ecosystems and factors from which primary production depends. | | | | The course of Soil Science is designed to provide an overview of the fundamental: Physical processes, Chemical processes, | A22 | B11 | | Fertility, Biology, and Land Use. Both theoretical and practical contents in Soil Science should contribute to enhance the skills | A24 | | | of Biology students at the UDC in the use of several instrumental techniques. | A28 | | | | A30 | | | | A32 | | | The course of Soil Science is designed to provide an overview of the fundamental: Physical processes, Chemical processes, | A23 | B1 | | Fertility, Biology, and Land Use. Both theoretical and practical contents in Soil Science should contribute to enhance the skills | | B2 | | of Biology students at the UDC in the use of several instrumental techniques. | | В7 | | | | B12 | | Soils act as substrates for vegetal communities and also as adsorbent and absorbent for nutritive, and allow life of many | A27 | B8 | | animal and vegetal organisms. Therefore our program pays particular attention to the ?edaphosphere? as a complex dynamic | A30 | B10 | | and organised site, located in the interface between biosphere, lithosphere, hydrosphere and atmosphere. Soil is also the | A31 | | | support of man-made spaces or sites influenced by man activity, such as urban-industrial areas and transport infrastructures. | | | | Soils act as substrates for vegetal communities and also as adsorbent and absorbent for nutritive, and allow life of many | | В3 | | animal and vegetal organisms. Therefore our program pays particular attention to the ?edaphosphere? as a complex dynamic | | В6 | | and organised site, located in the interface between biosphere, lithosphere, hydrosphere and atmosphere. Soil is also the | | В8 | | support of man-made spaces or sites influenced by man activity, such as urban-industrial areas and transport infrastructures. | | | | Because of the role of the soil for terrestrial ecosystems, Edaphology has a particular interest in Environmental Biology. The | A24 | B1 | | soil food chain describes a complex living system and how it interacts with the environment, plants, and animals. The nature of | A28 | | | soil makes direct observation of food webs difficult. Soil microbial communities are characterized in many different ways. The | A31 | | | activity of microbes can be measured by their respiration and carbon dioxide release. The cellular components of microbes | | | | can be extracted from soil and genetically profiled, or microbial biomass can be calculated by weighing the soil before and | | | | after fumigation. | | | | Because of the role of the soil for terrestrial ecosystems, Edaphology has a particular interest in Environmental Biology. The | A20 | В9 | | soil food chain describes a complex living system and how it interacts with the environment, plants, and animals. The nature of | A23 | B10 | | soil makes direct observation of food webs difficult. Soil microbial communities are characterized in many different ways. The | A27 | | | activity of microbes can be measured by their respiration and carbon dioxide release. The cellular components of microbes | A31 | | | can be extracted from soil and genetically profiled, or microbial biomass can be calculated by weighing the soil before and | | | | after fumigation. | | | | Contents | | | |----------|---------------------|--| | Topic | Sub-topic Sub-topic | | | ILCOIL COMPOCITION | | |--|--| | II SOIL COMPOSITION | | | | Soil texture. Specific surface. Soil mineralogy. Soil clays. Structure and properties of | | Lesson 3 Soil mineral composition. Soil clays. | most common soil clays. Oxyhydroxides. | | | Soil organic compounds. Humus. Organo-mineral associations. Organic matter and | | Lesson 4 Soil organic matter. | ecosystems: biogeochemical cycles. | | I PRELIMINARY CONCEPTS | | | Lesson 1 History of Soil Science. | Origin and development of Soils Science. Main topics in Soil Science. | | Lesson 2 Soil descripton in field conditions. Laboratory | Profile and horizons. Physical, Chemical and Bioñogical methods of soil analysis. | | techniques for soil studies. | | | III SOIL PROPERTIES | Bulk density and solid density. Soil porosity. Pore-size distribution. Aggregate | | | dynamics in soils. Structural stability. | | Lesson 5 Soil physical properties and soil structure. | | | Lesson 6 Soil water retention and water dynamics. | Soil moisture content and soil potential. Soil water measurement. Soil moisture | | Lesson 7 Soil temperature and aeration. | characteristic curve. Soil water retention and soil water dynamics. Soil water and | | Lesson 8 Soil pH and cation exchange capacity. | water requirements of vegetation. | | Lesson 9 Soil biology. | | | Lesson 10. Soil fertility | Soil thermal properties. Soil temperature management. Composition of the soil | | | atmosphere. Soil and gases of greenhouse effect. | | | Soil pH and soil acidity. Soil acidity effects. Acidity amendment. Exchange complex of | | | soils. Cation exchange capacity. | | | Soil organisms. Soil enzymatic activity. Nucleic acids in soil. Soil organism and soil | | | properties as indicators of soil quality. | | | Macronutrients and micronutrients. Nitrogen , phosphorus and potassium cycles. | | | Calcium and magnesium. Iron, cupper, zinc, boron | | | and molybdenum. Other oligoelements | | IV FACTORS AND PROCESSES OF SOIL FORMATION | | | | Parent material. Climate. Topography. Times Vegetations and organisms. | | | Anthropogenic factors. | | Lesson 11 Factors of soil formation. | | | | Soil profile differentiation. Clay accumulation. Podzolization. Salinization. Calcification. | | Lesson 12 Processes of soil formation. | Hydromorphic processes. Ferralitic alteration. | | V COIL EVETEMATICE AND CLASSIFICATION | Consoin and diagnostic harizons. Cail profile. Harizon account to | |--|--| | V SOIL SYSTEMATICS AND CLASSIFICATION | Genesic and diagnostic horizons. Soil profile. Horizon nomenclature. | | | Modern Soil Classifications. Soil Taxonomy. World Reference Base for | | Laccon 42 Cail Contamption | Soil Resources. | | Lesson 13 Soil Systematics. | Observatoristics for a distinguish Maintage and to several the services of | | | Characteristics for soil diagnosis. Moisture and temperature regimes. Oreders, | | Lancas AA Later dusting to On'll Tourses | suborders, great groups, subgroups, families, and series. | | Lesson 14 Introduction to Soil Taxonomy. | | | | Organic soil. Soil with anthropic influences. Soils conditioned by topography and by | | Lanca 45 World Paferson Page (or 0.1 Page 1997) | time. Soils conditioned by cold, temperate, steppe, arid or semiarid and tropical or | | Lesson 15 World Reference Base for Soil Resources. | subtropical climates. | | | Soil under Atlantia alimeta Soila under Maditarrancan alimeta Calisian soila narrat | | Leasen 16 Chanish and Calisian Saila | Soil under Atlantic climate. Soils under Mediterranean climate. Galician soils: parent | | Lesson 16 Spanish and Galician Soils. | material, climate, topography and vegetation effects. | | VI APPLIED SOIL SCIENCE | Soil cartography. | | Lesson 17 Applications of Soil Science. | Interactions soil-landscape. | | | Soil and environment | | | Soil and environment. Soil contamination. | | | | | | Recovery of contaminated soils. | | DDACTICAL ACTIVITIES | Soil Use and Management. | | PRACTICAL ACTIVITIES | Textural analysis Bulk density and solid density, Porosity. | | | Aggregate stability | | | Soil pH. | | | | | Laboratory work | Organic carbon and nitrogen Cation exchange capacity | | Laboratory work | | | | Soil extractable phosphorus | | | Biological activity and dehydrogenase activity | | | Consistudios: Umbrigala Cambicala Eluvisala and Clavada | | | Case studies: Umbrisols, Cambisols, Fluvisols, and Gleysols | | | | | | | | Field studies | | | i ielu studies | Soil erotion as a source of diffuse pollution | |---| | Mechanisms and processes of water erosion under an Atlantic climate | | Effect of forest fires in soil degradation | | Mining and soil contamination | | Livestock farming and soil contamination | | Landfills and soil contamination | | Organic pollutants | | Physical-chemical indicators of soil quality | | Biological indicators of soil quality | | Vineyard soil in Galicia | | Excessive soil fertilisation with slurry | | Soil compactation risks | | Hydric balance in soils | | Heavy metals in soils | | | | | Planning | | | | |--------------------------------|---------------------|----------------|--------------------|-------------| | Methodologies / tests | Competencies | Ordinary class | Student?s personal | Total hours | | | | hours | work hours | | | Guest lecture / keynote speech | A6 A21 A22 A23 A24 | 21 | 40 | 61 | | | A31 B2 B7 B8 B9 B11 | | | | | Supervised projects | A20 A26 A27 A28 | 7 | 16 | 23 | | | A30 A32 B1 B3 B6 | | | | | | B10 B12 | | | | | Field trip | A20 A23 B3 B6 | 4 | 10 | 14 | | Laboratory practice | A6 A20 A21 B8 B10 | 14 | 28 | 42 | | Personalized attention | | 10 | 0 | 10 | | Methodologies | | | |---------------------|--|--| | Methodologies | Description | | | Guest lecture / | The contents of soil science will be developed. | | | keynote speech | The used audiovisual materials will be provided to students. | | | Supervised projects | These are guided and supervised academic activities | | | Field trip | The main soil types in Galicia will be observed. | | | Laboratory practice | Asessement of main physical, chemical and biological properties of soils | | | | Personalized attention | | | |---------------------|--|--|--| | Methodologies | Description | | | | Supervised projects | Personalized attention will be provided by individual meetings in dates previously selected. | | | | Laboratory practice | | | | | Field trip | | | | | Assessment | | | | | |---------------------|-------------------|---|---------------|--| | Methodologies | Competencies | Description | Qualification | | | Supervised projects | A20 A26 A27 A28 | Quality of the reports and presentations. | 30 | | | | A30 A32 B1 B3 B6 | | | | | | B10 B12 | | | | | Laboratory practice | A6 A20 A21 B8 B10 | Continuous assessment and practical work. | 15 | | | Field trip | A20 A23 B3 B6 | Assessment of field activities and reports of filed work. | 5 | | | Guest lecture / | A6 A21 A22 A23 A24 | Short questions and tests about the keynote speech. Final examination and also | 50 | |-----------------|---------------------|--|----| | keynote speech | A31 B2 B7 B8 B9 B11 | partial examinations, if requested. | | | | | | | ## Assessment comments Soil Science global grade can be assessed by continuous evaluation following the Bologna criteria. Evaluations may be performed not only in English, but also in Galician or Spanish, if requested by the students. | Sources of information | | | | |------------------------|--|--|--| | Basic | LAL, R. 2002. Encyclopedia of Soil Science. Marcel Dekker.PORTACASANELLAS, J. LÓPEZ AVEVEDO, M y | | | | | ROQUERO, C. 2003. Edafología para la agricultura y el medio ambiente. Ediciones Mundi-Prensa.960 | | | | | pp.PORTACASANELLAS, J. LÓPEZ AVEVEDO, M y POCH, R.M. 2008. Introducción a la Edafologia: uso y | | | | | protección del suelo. Ediciones Mundi-Prensa. 451 pp. WRB. 2006. World Referente Base for Soil Resources. | | | | | Wageningen/Roma. | | | | Complementary | Recursos web:www.iuss.orgwww.edafologia.ugr.eswww.soilerosion.netMapas de suelos de las cuatro provincias de | | | | | Galicia y diversas provincias de España | | | | | Recommendations | |------------------------------|--| | | Subjects that it is recommended to have taken before | | Geology/610G02004 | | | Physical Geography/610G02006 | | | | Subjects that are recommended to be taken simultaneously | | | | | | Subjects that continue the syllabus | | | | | | Other comments | | | | (*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.