|                         |                                                                                                                      | Teaching          | g Guide                               |                                |                                 |
|-------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------|--------------------------------|---------------------------------|
|                         | Identifyin                                                                                                           | g Data            |                                       |                                | 2022/23                         |
| Subject (*)             | Data Analytics with HPC Code                                                                                         |                   |                                       | Code                           | 614473108                       |
| Study programme         | Mestrado Universitario en Compu                                                                                      | ıtación de Altas  | Prestacións / Hig                     | h Performance Comput           | ting (Mod. Presencial)          |
|                         |                                                                                                                      | Descri            | ptors                                 |                                |                                 |
| Cycle                   | Period                                                                                                               | Ye                | ar                                    | Туре                           | Credits                         |
| Official Master's Degre | e 2nd four-month period                                                                                              | Fin               | st                                    | Optional                       | 6                               |
| Language                | English                                                                                                              |                   |                                       |                                |                                 |
| Teaching method         | Face-to-face                                                                                                         |                   |                                       |                                |                                 |
| Prerequisites           |                                                                                                                      |                   |                                       |                                |                                 |
| Department              | Enxeñaría de Computadores                                                                                            |                   |                                       |                                |                                 |
| Coordinador             | López Taboada, Guillermo E-mail guillermo.lopez.taboada@udc.es                                                       |                   |                                       | aboada@udc.es                  |                                 |
| Lecturers               | López Taboada, Guillermo                                                                                             |                   | E-mail guillermo.lopez.taboada@udc.es |                                |                                 |
|                         | Rodríguez Álvarez, Gabriel                                                                                           |                   | gabriel.rodriguez@udc.es              |                                |                                 |
| Web                     | aula.cesga.es                                                                                                        | '                 |                                       |                                |                                 |
| General description     | The increasing amount of informa                                                                                     | tion available th | nrough the Interne                    | et calls for the efficient p   | processing of large amounts of  |
|                         | data. This has led to the developr                                                                                   | ment of new sto   | rage and process                      | sing techniques to deal v      | with huge amounts of data,      |
|                         | namely Big Data techniques, that naturally adapt to distributed systems.                                             |                   |                                       |                                |                                 |
|                         | The main goal of this subject is to learn suitable processing techniques for large amounts of information in the Big |                   |                                       | of information in the Big Data |                                 |
|                         | world, particularly using the Hado                                                                                   | op ecosystem,     | and compare the                       | se techniques with the t       | raditional ones employed in HPC |
|                         | environments. This will allow the                                                                                    | student to selec  | t the optimal tools                   | s to solve a particular pr     | oblem.                          |

|      | Study programme competences / results                                                                                                                 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Code | Study programme competences / results                                                                                                                 |
| A1   | CE1 - Define, evaluate and select the most appropriate architecture and software to solve a problem                                                   |
| A2   | CE2 - Analyze and improve the performance of a given architecture or software                                                                         |
| B1   | CB6 - Possess and understand the knowledge that give a baseline or opportunity to be original in the development and/or application of                |
|      | ideas, often in a research environment                                                                                                                |
| B2   | CB7 - The students have to know how to apply the acquired knowledge and their capacity to solve problems in new or hardly explored                    |
|      | environment inside wider contexts (or multidiscipinary) related to its area of development                                                            |
| B6   | CG1 - Be able to search and select useful information to solve complex problems, using the bibliographic sources of the field                         |
| B8   | CG3 - Be able to maintain and extend properly funded theoretical hypothesis to allow the introduction and exploitation of novel and                   |
|      | advanced technologies in the field                                                                                                                    |
| B10  | CG5 - Be able to work in teams, specially multidisciplinary, and do a proper time and people management and decision taking                           |
| C1   | CT1 - Use the basic technologies of the information and computing technology field required for the professional development and the                  |
|      | long-life learning                                                                                                                                    |
| C4   | CT4 - Value the importance of research, innovation and the technological development in the socioeconomical and cultural advance of the               |
|      | society                                                                                                                                               |
|      | long-life learning  CT4 - Value the importance of research, innovation and the technological development in the socioeconomical and cultural actions. |

| Learning outcomes                                                                                                    |      |          |      |
|----------------------------------------------------------------------------------------------------------------------|------|----------|------|
| Learning outcomes                                                                                                    | Stud | y progra | ımme |
|                                                                                                                      | con  | npetenc  | es/  |
|                                                                                                                      |      | results  |      |
| The student will be capable of installing, configuring, and managing the basic software for massive data processing. | AJ1  | BJ2      | CJ1  |
|                                                                                                                      | AJ2  | BJ6      |      |
|                                                                                                                      |      | BJ8      |      |
|                                                                                                                      |      | BJ10     |      |

| The student will be capable of coding massive data processing applications using domain-specific languages.               | AJ2 | BJ1  | CJ1 |
|---------------------------------------------------------------------------------------------------------------------------|-----|------|-----|
|                                                                                                                           |     | BJ2  |     |
|                                                                                                                           |     | BJ10 |     |
| The student will learn about Data Engineering tools (for Intake/Storage/Processing/Visualization).                        | AJ1 | BJ1  | CJ1 |
|                                                                                                                           | AJ2 | BJ2  | CJ4 |
| The student will learn the skills to search, select and manage Big data-related resources (bibliography, software, etc.). | AJ1 | BJ1  | CJ1 |
|                                                                                                                           | AJ2 | BJ6  | CJ4 |

|                                   | Contents                                                                     |
|-----------------------------------|------------------------------------------------------------------------------|
| Topic                             | Sub-topic                                                                    |
| Introduction to Data Engineering  | 1.1 HPC vs Big Data: similarities and differences in data management.        |
|                                   | 1.2 Hardware and Software Technologies for High Performance Data Engineering |
|                                   | 1.3 Data Engineering in HPC infrastructures vs. Cloud environments           |
| 2. Introduction to Data Analytics | 2.1 Exploratory Data Analytics                                               |
|                                   | 2.2 Introduction to Machine Learning                                         |
| 3. Data Engineering phases        | 3.1 Modeling (Formats, Compression, Designing Schemas)                       |
|                                   | 3.2 Intake (Periodicity, Transformations, Tools)                             |
|                                   | 3.3 Storage (HDFS and NoSQL DBs, HBase, MongoDB, Cassandra)                  |
|                                   | 3.4 Processing (Batch, Real-Time)                                            |
|                                   | 3.5 Orchestration                                                            |
|                                   | 3.6 Analysis (SQL, Machine Learning, Graphs, UI)                             |
|                                   | 3.7 Governance                                                               |
|                                   | 3.8 Integration with BI (Visualization)                                      |
| 4. Use cases                      | 4.1 Applications to Internet of Things (Smart environments and Industry 4.0) |
|                                   | 4.2 Applications to sciences and engineering                                 |

|                                                 | Plannir                   | ng                      |                           |             |
|-------------------------------------------------|---------------------------|-------------------------|---------------------------|-------------|
| Methodologies / tests                           | Competencies /            | Teaching hours          | Student?s personal        | Total hours |
|                                                 | Results                   | (in-person & virtual)   | work hours                |             |
| Guest lecture / keynote speech                  | A1 A2 B1 C4               | 18                      | 0                         | 18          |
| Laboratory practice                             | B1 B8 B10                 | 20                      | 60                        | 80          |
| Supervised projects                             | A1 A2 B1 B2 B8            | 0                       | 45                        | 45          |
| Directed discussion                             | B6 C1 C4                  | 4                       | 2                         | 6           |
| Personalized attention                          |                           | 1                       | 0                         | 1           |
| (*)The information in the planning table is for | guidance only and does no | t take into account the | heterogeneity of the stud | dents.      |

|                     | Methodologies                                                                                           |
|---------------------|---------------------------------------------------------------------------------------------------------|
| Methodologies       | Description                                                                                             |
| Guest lecture /     | Taught by a professor. Classes include theoretical contents, as well as seminars.                       |
| keynote speech      |                                                                                                         |
| Laboratory practice | Problem solving and practical cases.                                                                    |
| Supervised projects | Semi-autonomous work on larger practical cases, under the professors' guidance.                         |
| Directed discussion | Guidance to solve individual / group assignments, problem solving and continuous evaluation activities. |

| Personalized attention |             |
|------------------------|-------------|
| Methodologies          | Description |



| Directed discussion | During laboratory practice, supervised projects, and directed discussions, students will be able to ask questions, doubts, etc. |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Laboratory practice | The teacher, after listening to the students feedback, will go over difficult concepts, solve new problems, or use any          |
| Supervised projects | appropriate methodology to answer the questions.                                                                                |
|                     |                                                                                                                                 |

|                     |                | Assessment                                             |               |
|---------------------|----------------|--------------------------------------------------------|---------------|
| Methodologies       | Competencies / | Description                                            | Qualification |
|                     | Results        |                                                        |               |
| Laboratory practice | B1 B8 B10      | Grading the assignments submitted by students.         | 50            |
| Supervised projects | A1 A2 B1 B2 B8 | Grading the supervised projects submitted by students. | 50            |

## **Assessment comments**

Not graded: Students that do not present any practical exercise or guided project will not be graded.

Second opportunity (June/July): Resubmit those laboratory practices or supervised projects not previously presented or submitting improved versions of previously presented practices/projects.

In the case of fraudulent performance of practices or projects the regulations of the University will be applied.

|               | Sources of information                                                                                             |
|---------------|--------------------------------------------------------------------------------------------------------------------|
| Basic         | - Tom White (2015). Hadoop: The Definitive Guide. O'Reilly (4ª ed.)                                                |
|               | - Wes McKinney (2017). Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. O'Reilly (2ª ed.) |
| Complementary | - Alex Holmes (2014). Hadoop in practice. Manning (2ª ed.)                                                         |

| Recommendations                                          |
|----------------------------------------------------------|
| Subjects that it is recommended to have taken before     |
|                                                          |
| Subjects that are recommended to be taken simultaneously |
|                                                          |
| Subjects that continue the syllabus                      |
|                                                          |
| Other comments                                           |
|                                                          |

RecommendationsDue to the large practical component of the subject, it is advisable to be up-to-date with practices and guided projects during the semester.

Observations The course makes intensive use of online communication tools: Video calls, chats, etc. In-person classes will be recorded for later perusing. An online learning management will be using for distributing notes, creating forums, etc.

 $\verb§Anbsp]{The software tools used in this course are generally open-source or have free license for students.}$ 

(\*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.