		Teaching Guide				
	ldentifying I	Data		2022/23		
Subject (*)	Analysis of biomedical images		Code	614522010		
Study programme	Mestrado Universitario en Bioinforma	ática para Ciencias da Sa	aúde	'		
		Descriptors				
Cycle	Period	Year	Туре	Credits		
Official Master's Degre	e 2nd four-month period	First	Obligatory	6		
Language	Spanish		'	'		
Teaching method	Face-to-face					
Prerequisites						
Department	Ciencias da Computación e Tecnolo	xías da InformaciónCom	putación			
Coordinador	Barreira Rodriguez, Noelia	E-m	ail noelia.barreira	@udc.es		
Lecturers	Barreira Rodriguez, Noelia	E-m	ail noelia.barreira	@udc.es		
	Novo Bujan, Jorge		j.novo@udc.es	3		
	Ramos García, Lucia		I.ramos@udc.e	es		
Web		,				
General description	This course presents introductory me	edical image processing	and analysis techniques. It	presents basic concepts about		
	image processing. Topics include data acquisition, imaging, filtering, image segmentantion and registration. The focus of					
	the course is to provide a global perspective and practical experience in the field.					

	Study programme competences
Code	Study programme competences
A1	CE1 - Ability to know the scope of Bioinformatics and its most important aspects
A2	CE2 ? To define, evaluate and select the architecture and the most suitable software for solving a problem in the field of bioinformatics
A4	CE4 - Ability to acquire, obtain, formalize and represent human knowledge in a computable form for the resolution of problems through a
	computer system in any field of application, particularly those related to aspects of computing, perception and action in bioinformatics
	applications
A6	CE6 - Ability to identify software tools and most relevant bioinformatics data sources, and acquire skill in their use
B1	CB6 - Own and understand knowledge that can provide a base or opportunity to be original in the development and/or application of ideas
	often in a context of research
B2	CB7 - Students should know how to apply the acquired knowledge and ability to problem solving in new environments or little known within
	broad (or multidisciplinary) contexts related to their field of study
B5	CB10 - Students should possess learning skills that allow them to continue studying in a way that will largely be self-directed or
	autonomous.
B6	CG1 -Search for and select the useful information needed to solve complex problems, driving fluently bibliographical sources for the field
В7	CG2 - Maintain and extend well-founded theoretical approaches to enable the introduction and exploitation of new and advanced
	technologies
C3	CT3 - Use the basic tools of the information technology and communications (ICT) necessary for the exercise of their profession and
	lifelong learning
C6	CT6 - To assess critically the knowledge, technology and information available to solve the problems they face to.

Learning outcomes			
Learning outcomes	Study	/ progra	amme
	cor	npeten	ces
Understand the medical imaging modalities and their significance	AJ1	BJ1	
Understand the basic concepts of image processing		BJ5	CJ3
	AJ6	BJ6	
Design and evaluate medical analysis techniques		BJ2	CJ6
		BJ7	

	Contents
Topic	Sub-topic Sub-topic
Introduction to digital imaging.	Adquisition models.
	Quality metrics.
	Color spaces.
	Histograms.
Image processing.	Enhancement.
	Edge detection.
	Segmentation.
	Morphological operators.
Image registration and fusion.	Intensity vs features.
	Similarity measures.
	Multimodal methods.
Validation of medical image analysis methodologies	Measures for quality assessment
	Training and testing methods
	Statistical tests

	Planning	g		
Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
Guest lecture / keynote speech	A1 A4 B1	16	16	32
Laboratory practice	A2 A6 B2 B7 C3	16	32	48
Research (Research project)	A2 B2 B5 B6	16	32	48
Practical test:	A2 A6	0	16	16
Objective test	A1 A2 B1 B2 C6	3	0	3
Personalized attention		3	0	3

	Methodologies
Methodologies	Description
Guest lecture /	Lectures with the use of audiovisual aids. Questions will be raised in order to transmit the knowledge and enforce the learning.
keynote speech	
Laboratory practice	The aim is to solve common problems in medical imaging using the methods explained in the lectures.
Research (Research	Proposal of a biomedical imaging problem in which learner is tasked with identifying problem, articulating specific nature of
project)	problem, analysing it, interpreting results, and reaching appropriate conclusion.
Practical test:	Practical application of specific techniques or procedures already studied in the keynote lectures during the semester.
Objective test	Test with questions about the theoretical contents of the subject as well as practical problems.

	Personalized attention
Methodologies	Description
Research (Research	Teachers will answer the doubts during the laboratory practice and they will provide personal advising for the supervised
project)	projects.
Practical test:	
Laboratory practice	
Objective test	

Assessment			
Methodologies	Competencies	Description	Qualification

Research (Research	A2 B2 B5 B6	Suitability of the proposed solutions to the problems. Quality of the obtained results.	
project)		Comprehension of the employed techniques.	
Practical test:	A2 A6	Suitability of the solutions to the practical excercises proposed during the semester.	20
Laboratory practice	A2 A6 B2 B7 C3	Suitability of the proposed solutions to the problems. Quality of the obtained results.	20
		Comprehension of the employed techniques.	
Objective test	A1 A2 B1 B2 C6	Written test with theoretical questions and practical problems to be solved.	30

Assessment comments

- Students will pass the subject if the sum of their grades in all the assessment assignments and tests is, at least, 50%.- Students will get a No show if they do not submit any of the assignments nor attend the objective test.- The practical exercises proposed during the semester can not be retaken in the second chance. - In the second chance, students who failed the subject in the first chance can submit the unsubmitted laboratory practices and research project as well as attend the objective test.ACADEMIC EXEMPTION For all those students with half time dedication and academic exemption specific considerations will be taken.

	Sources of information
Basic	- Rafael C. González, Richard E. Woods (2010). Digital image processing. Upper Saddle River (New Jersey) :
	Pearson-Prentice Hall, [2010]
	- Milan Sonka, Vaclav Hlavac, Roger Boyle (2014). Image processing, analysis and machine vision. Pacific Grove,
	California : Brooks/Cole Publishing Company,
Complementary	- David A. Forsyth, Jean Ponce (2012). Computer vision : a modern approach. Boston : Pearson
	- Richard Szeliski (2010). Computer Vision: Algorithms and Applications. Springer (draft online)

Recommendations		
Subjects that it is recommended to have taken before		
Introduction to programming/614522001		
Subjects that are recommended to be taken simultaneously		
Probability. statistics and elements of biomathematics/614522007		
Foundations of Artificial Intelligence/614522003		
Subjects that continue the syllabus		
Advanced medical visualization/614522019		
Other comments		

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.