		Teaching Guide	Э		
	Identifyin	g Data			2022/23
Subject (*)	Deep Learning			Code	614544013
Study programme	Máster Universitario en Intelixenc	ia Artificial			
		Descriptors			
Cycle	Period	Year		Туре	Credits
Official Master's Degree	e 2nd four-month period	First		Optional	6
Language	English				·
Teaching method	Face-to-face				
Prerequisites					
Department	Ciencias da Computación e Tecn	oloxías da Informaciór	1		
Coordinador	Mosqueira Rey, Eduardo E-mail eduardo.mosqueira@udc.es				
Lecturers	Mosqueira Rey, Eduardo E-mail eduardo.mosqueira@udc.es			ueira@udc.es	
Web					
General description	The course introduces methods the	nat mimic human perce	eption and lea	arning through absti	actions based on multilevel
	assimilation. Focusing on the con	cept of artificial neural	networks, the	e student will be trai	ned not only in the use of different
	generation strategies, but also in those that are best adapted to each particular application case. Regularization and			on case. Regularization and	
	stability techniques will also be de	escribed in order to ma	ximize the pe	erformance of the ge	enerated models.

	Study programme competences / results
Code	Study programme competences / results
A11	CE10 - Ability to implement, validate and apply a stochastic model starting from the observed data on a real system, and to perform a
	critical analysis of the obtained results, selecting those ones most suitable for problem solving
A12	CE11 - Understanding and command of the main techniques and tools for data analysis, both from the statistical and the machine learning
	viewpoints, including those devised for large volumes of data, and ability to select those ones most suitable for problem solving
A13	CE12 - Ability to outline, formulate and solve all the stages of a data project, including the understanding and command of basic concepts
	and techniques for information search and filtering in big collections of data
A16	CE15 - Knowledge of computer tools in the field of machine learning and ability to select those ones most suitable for problem solving
B2	CG02 - Successfully addressing each and every stage of an Al project
В3	CG03 - Searching and selecting that useful information required to solve complex problems, with a confident handling of bibliographical
	sources in the field
В4	CG04 - Suitably elaborating written essays or motivated arguments, including some point of originality, writing plans, work projects,
	scientific papers and formulating reasonable hypotheses in the field
B5	CG05 - Working in teams, especially of multidisciplinary nature, and being skilled in the management of time, people and decision making
В6	CB01 - Acquiring and understanding knowledge that provides a basis or opportunity to be original in the development and/or application of
	ideas, frequently in a research context
В7	CB02 - The students will be able to apply the acquired knowledge and to use their capacity of solving problems in new or poorly explored
	environments inside wider (or multidisciplinary) contexts related to their field of study
B8	CB03 - The students will be able to integrate different pieces of knowledge, to face the complexity of formulating opinions (from
	information that may be incomplete or limited) and to include considerations about social and ethical responsibilities linked to the
	application of their knowledge and opinions
В9	CB04 - The students will be able to communicate their conclusions, their premises and their ultimate justifications, both to specialised and
	non-specialised audiences, using a clear style language, free from ambiguities
C3	CT03 - Use of the basic tools of Information and Communications Technology (ICT) required for the student's professional practice and
	learning along her life
C4	CT04 - Acquiring a personal development for practicing a citizenship under observation of the democratic culture, the human rights and
	the gender perspective
C7	CT07 - Developing the ability to work in interdisciplinary or cross-disciplinary teams to provide proposal that contribute to a sustainable
	environmental, economic, political and social development

C8	CT08 - Appreciating the importance of research, innovation and technological development in the socioeconomic and cultural progress of
	society
C9	CT09 - Being able to manage time and resources: outlining plans, prioritising activities, identifying criticisms, fixing deadlines and sticking
	to them

Learning outcomes			
Learning outcomes	Study	progra	amme
	con	npetenc	ces/
		results	
To understand the functioning of Artificial Neuron Networks.	AC10		CC8
	AC11		CC9
Be able to design Deep Learning architectures	AC10	BC2	CC4
	AC11	BC3	CC7
	AC12	BC4	CC8
	AC15	BC5	CC9
		BC6	
		BC7	
		BC8	
		BC9	
Be able to obtain models capable of pattern classification and image recognition.	AC10	BC2	CC3
	AC11	ВС3	CC4
	AC15	BC4	CC8
		BC6	CC9
		BC7	
		BC8	
		BC9	
Be able to visualize and analyze the learning information of a Deep Learning architecture.	AC10	BC4	CC8
so able to violatize and analyze the learning information of a book boarding drontostate.	7.010	207	500

Contents		
Topic	Sub-topic	
1. Introduction to deep learning	Shallow learning	
	Deep learning	
2. Regularization and optimization in deep learning	Regularization via data	
	Regularization via model	
	Regularization via objective function	
	Optimization	
3. Convolutional neural networks (CNNs)	Convolutions	
	Pooling	
	CNN architectures	
4. Recurrent neural networks (RNNs)	Simple recurrent networks	
	LSTM networks	
	GRU networks	
5. Autoencoders	How autoencoding works	
	Anomaly detection autoencoders	
	Denoising autoencoders	
6. Generative Adversial Networks (GANs)	Generative modeling with variational autoencoders	
	GAN networks	
	Deep convolutional GANs	

7. Transfer learning	How transfer learning works
	Transfer learning approaches
8. Other deep learning techniques	Multi-task learning
	Transformers

	Plannin	9		
Methodologies / tests	Competencies /	Teaching hours	Student?s personal	Total hours
	Results	(in-person & virtual)	work hours	
Guest lecture / keynote speech	A11 A12 A13 B2 B3	21	21	42
	B6 B8 B9 C4 C8			
Laboratory practice	A11 A12 A13 A16 B2	21	84	105
	B3 B4 B5 B6 B7 B8			
	B9 C3 C7 C9			
Objective test	A11 A12 B7 B9	3	0	3
Personalized attention		0		0

Methodologies			
Methodologies	Description		
Guest lecture /	Lectures explain the theoretical concepts using different digital resources.		
keynote speech			
Laboratory practice	Laboratory activities are based on the knowledge that students are acquiring in lectures.		
Objective test	A test shall be administered to assess the theoretical and practical knowledge acquired by students		

	Personalized attention				
Methodologies	Description				
Laboratory practice	Personalized attention to students includes not only tutorials (either virtual or in-person) to discuss questions, but also the				
	following actions:				
	- Monitor the work of laboratory practices proposed by the teacher.				
	- Evaluate of the results obtained in practice and seminars.				
	- Conduct personalized meetings to answer questions about the contents of the subject.				

	Assessment			
Methodologies	Competencies /	Description	Qualification	
	Results			
Laboratory practice	A11 A12 A13 A16 B2	Practice exercises based on the knowledge acquired in the theoretical classes.	50	
	B3 B4 B5 B6 B7 B8			
	B9 C3 C7 C9			
Objective test	A11 A12 B7 B9	Test conducted at the end of the semester with theoretical and practical content.	50	

Assessment comments

Specific evaluation percentages for each part of the course.

The evaluation of the course will be carried out in two parts: continuous evaluation (practices) and final exam. In order to pass the course it is essential to obtain a minimum grade of 4 in both parts separately. The final grade of the subject will be the arithmetic mean of the continuous evaluation and the final exam, except in those situations in which the minimum grade has not been reached in any of the two parts, in which case the final grade cannot be higher than 4. How the non-attending students are evaluated.

The submission of any of the activities or tests of continuous evaluation by a student will indicate the student has chosen to attend the course.

Therefore, from that moment on, even if he/she does not take the final exam, he/she will have used up an opportunity. How the second exam opportunity is evaluated.

In the second opportunity (July) the grades of the continuous evaluation and/or the final exam obtained during the four-month period will be kept, as long as the grade in that part is 4 or more points. If the student attends the second opportunity in the continuous evaluation part or the final exam, the grade obtained in the first opportunity for that part will be annulled, and the corresponding grade for that part will be that of the second opportunity. For the continuous evaluation, a deadline will be established for the submission of the practices. The final grade of the course in the second opportunity will be calculated with the same criteria as in the first opportunity.

Sources of information		
Basic	- François Chollet (2021). Deep Learning with Python, 2nd Ed Manning	
	- Aurélien Géron (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Ed O'Reilly	
	- Mohamed Elgendy (2020). Deep Learning for Vision Systems. Manning	
	- Jakub Langr, Vladimir Bok (2019). GANs in Action. Manning	
	- Ian Goodfellow, Yoshua Bengio, Aaron Courville (2016). Deep Learning. MIT Press	
Complementary	- Andrew Ferlitsch (2021). Deep Learning Patterns and Practices. Manning	
	- Andrew W. Trask (2019). Grokking Deep Learning . Manning	

	Recommendations
	Recommendations
	Subjects that it is recommended to have taken before
Machine Learning I /614544012	
	Subjects that are recommended to be taken simultaneously
Machine Learning II /614544014	
	Subjects that continue the syllabus
	Other comments

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.