

		Teaching Guide			
	Identifying Data 2022/23				
Subject (*)	Data Analytics with HPC Code 614973108				
Study programme	Mestrado Universitario en Computado	ción de Altas Prestacións /	High Performance Comput	ing (Mod. Virtual)	
		Descriptors			
Cycle	Period	Year	Туре	Credits	
Official Master's Degre	e 2nd four-month period	First	Optional	6	
Language	English				
Teaching method	Non-attendance				
Prerequisites					
Department	Departamento profesorado másterE	nxeñaría de Computadore	S		
Coordinador	López Taboada, Guillermo	E-mai	guillermo.lopez.ta	guillermo.lopez.taboada@udc.es	
Lecturers	López Taboada, Guillermo	E-mai	il guillermo.lopez.ta	guillermo.lopez.taboada@udc.es	
	Rodríguez Álvarez, Gabriel		gabriel.rodriguez	gabriel.rodriguez@udc.es	
Web	aula.cesga.es	I	I		
General description	The increasing amount of informatio	n available through the Inte	ernet calls for the efficient p	rocessing of large amounts of	
	data. This has led to the developme	nt of new storage and proc	essing techniques to deal w	vith huge amounts of data,	
	namely Big Data techniques, that na	aturally adapt to distributed	systems.		
	The main goal of this subject is to le	arn suitable processing teo	chniques for large amounts	of information in the Big Data	
	world, particularly using the Hadoop	ecosystem, and compare	these techniques with the tr	raditional ones employed in HPC	
	environments. This will allow the stu	dent to select the optimal t	ools to solve a particular pro	oblem.	

	Study programme competences
Code	Study programme competences
A1	CE1 - Define, evaluate and select the most appropriate architecture and software to solve a problem
A2	CE2 - Analyze and improve the performance of a given architecture or software
B1	CB6 - Possess and understand the knowledge that give a baseline or opportunity to be original in the development and/or application of
	ideas, often in a research environment
B2	CB7 - The students have to know how to apply the acquired knowledge and their capacity to solve problems in new or hardly explored
	environment inside wider contexts (or multidiscipinary) related to its area of development
B6	CG1 - Be able to search and select useful information to solve complex problems, using the bibliographic sources of the field
B8	CG3 - Be able to maintain and extend properly funded theoretical hypothesis to allow the introduction and exploitation of novel and
	advanced technologies in the field
B10	CG5 - Be able to work in teams, specially multidisciplinary, and do a proper time and people management and decision taking
C1	CT1 - Use the basic technologies of the information and computing technology field required for the professional development and the
	long-life learning
C4	CT4 - Value the importance of research, innovation and the technological development in the socioeconomical and cultural advance of the
	society

Learning outcomes			
Learning outcomes	Study programme		imme
	competences		
The student will be capable of installing, configuring, and managing the basic software for massive data processing.	AJ1	BJ2	CJ1
	AJ2	BJ6	
		BJ8	
		BJ10	
The student will be capable of coding massive data processing applications using domain-specific languages.	AJ2	BJ1	CJ1
		BJ2	
		BJ10	

The student will learn about Data Engineering tools (for Intake/Storage/Processing/Visualization).	AJ1	BJ1	CJ1
	AJ2	BJ2	CJ4
The student will learn the skills to search, select and manage Big data-related resources (bibliography, software, etc.).	AJ1	BJ1	CJ1
	AJ2	BJ6	CJ4

	Contents	
Торіс	Sub-topic	
1. Introduction to Data Engineering	1.1 HPC vs Big Data: similarities and differences in data management.	
	1.2 Hardware and Software Technologies for High Performance Data Engineering	
	1.3 Data Engineering in HPC infrastructures vs. Cloud environments	
2. Introduction to Data Analytics	2.1 Exploratory Data Analytics	
	2.2 Introduction to Machine Learning	
3. Data Engineering phases	3.1 Modeling (Formats, Compression, Designing Schemas)	
	3.2 Intake (Periodicity, Transformations, Tools)	
	3.3 Storage (HDFS and NoSQL DBs, HBase, MongoDB, Cassandra)	
	3.4 Processing (Batch, Real-Time)	
	3.5 Orchestration	
	3.6 Analysis (SQL, Machine Learning, Graphs, UI)	
	3.7 Governance	
	3.8 Integration with BI (Visualization)	
4 Use cases	4.1 Applications to Internet of Things (Smart environments and Industry 4.0)	
	4.2 Applications to sciences and engineering	

	Planning	g		
Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
Workbook	A1 A2 B1 B6 C4	0	18	18
Laboratory practice	B1 B8 B10	0	80	80
Supervised projects	A1 A2 B1 B2 B8	0	45	45
Directed discussion	B6 C1 C4	4	2	6
Personalized attention		1	0	1
(*)The information in the planning table is for	quidance only and does not	take into account the	beterogeneity of the stu	donte

(*)The information in the planning table is for guidance only and does not take into account the heterogeneity of the students.

	Methodologies	
Methodologies	Description	
Workbook	Planned instruction through various teaching materials.	
Laboratory practice	Problem solving and practical cases.	
Supervised projects	s Semi-autonomous work on larger practical cases, under the professors' guidance.	
Directed discussion Guidance to solve individual / group assignments, problem solving and continuous evaluation activities.		

	Personalized attention
Methodologies	Description
Laboratory practice	During laboratory practice, supervised projects, and directed discussions, students will be able to ask questions, doubts, etc.
Supervised projects	The teacher, after listening to the students feedback, will go over difficult concepts, solve new problems, or use any
Directed discussion	appropriate methodology to answer the questions.

		Assessment	
Methodologies	Competencies	Description	Qualification

Laboratory practice	B1 B8 B10	Grading the assignments submitted by students.	50
Supervised projects	A1 A2 B1 B2 B8	Grading the supervised projects submitted by students.	50

Assessment comments

Not graded: Students that do not present any practical exercise or guided project will not be graded.

Second opportunity (June/July): Resubmit those laboratory practices or supervised projects not previously presented or submitting improved versions of previously presented practices/projects.

In the case of fraudulent performance of practices or projects the regulations of the University will be applied.

	Sources of information
Basic	- Tom White (2015). Hadoop: The Definitive Guide. O'Reilly (4 ^a ed.)
	- Wes McKinney (2017). Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. O'Reilly (2ª ed.)
Complementary	- Alex Holmes (2014). Hadoop in practice. Manning (2 ^a ed.)

Recommendations
Subjects that it is recommended to have taken before
Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus
Other comments
RecommendationsDue to the large practical component of the subject, it is advisable to be up-to-date with practices and guided projects during the
semester. Observations The course makes intensive use of online communication tools: Video calls, chats, etc. In-person classes will be
recorded for later perusing. An online learning management will be using for distributing notes, creating forums, etc. & nbsp; The software tools used in
this course are generally open-source or have free license for students.

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.