		Teaching Guide		
	Identifyin	g Data		2022/23
Subject (*)	Thermo-mechanical fatigue		Code	730495008
Study programme	Mestrado Universitario en Materia	is Complexos: Análise Térmic	a e Reoloxía (plan 2012)	
		Descriptors		
Cycle	Period	Year	Туре	Credits
Official Master's Degree	e 2nd four-month period	First	Optional	2
Language	English			
Teaching method	Face-to-face			
Prerequisites				
Department	Enxeñaría Naval e IndustrialMater	máticas		
Coordinador	Tarrio Saavedra, Javier	E-mail	javier.tarrio@udc.	es
Lecturers	Díaz Díaz, Ana María	E-mail	ana.ddiaz@udc.e	S
	Tarrio Saavedra, Javier		javier.tarrio@udc.	es
Web			'	
General description	This course aims to describe the b	pasics to fatigue taking into ac	count both mechanical and	thermal effects (resistance,
	voltage, damage, growth / propag	ation of fractures, ?)		

	Study programme competences
0 1	
Code	Study programme competences
A1	Set up and conduct tests using the techniques of thermal analysis and rheology most appropriate in each case, within the scope of
	complex materials
A7	Knowing the different types of thermal thermo-mechanical behaviors in materials subjected to fatigue
A8	Understand and quantify the damage caused by thermomechanical fatigue in materials
B2	The students have the skill to apply their knowledge and their ability to solve problems in new or unfamiliar contexts within broader (or
	multidisciplinary) contexts related to their field of study
B4	That the students can communicate their conclusions and the knowledge and last reasons behind that conclusions to specialized and non
	specialized audience in a clear and unambiguous way
B7	Solving problems effectively
B10	Working in a collaborative way
B13	Analysis-oriented attitude
C2	Have a good command of spoken and writing expression and understanding of a foreign language.
C6	Critically assessing the knowledge, technology and information available to solve the problems they face with.
C7	To assume as a professional and citizen the importance of learning throughout life.
C8	To assess the importance of research, innovation and technological development in the socio-economic and cultural progress of society.

Learning outcomes			
Learning outcomes	Stud	y progra	ımme
	co	mpetend	ces
To know and evaluate the thermal / mechanical fatigue performance of materials	AR1	BR2	CR6
	AR7	BR4	CR8
		BR7	
To know and evaluate the thermal / mechanical fatigue performance of materials	AR7	BR7	CR6
	AR8	BR10	CR7
		BR13	CR8
Understand and quantify the damage caused by thermomechanical fatigue in materials	AR1	BR7	CR2
	AR7	BR10	CR6
	AR8	BR13	

Understand and quantify the damage caused by thermomechanical fatigue in materials	AR1	BR2	
	AR7	BR4	
	AR8	BR13	

	Contents
Topic	Sub-topic
The following blocks or topics develop the contents	1. Basic Introduction of Fatigue: Fatigue Resistance. Fatigue Voltage Parameters.
established in the Verification Report, which are:	Fatigue loads.
	2. Mechanical Fatigue: Fatigue tests. Resistance curves. Factors that affect the
	fatigue life.
	3. Thermal Fatigue: Tensions and thermal deformations. Propagation and growth of
	cracks. Microstructural changes.
Introduction to fracture mechanics	1.1. Fracture
	1.2. Fatigue
	1.2.1. S-N curves
	1.3. Creep
2. Fatigue	2.1. Fatigue parameters
	2.2. HCF
	2.3. LCF
	2.4. Paris equation
3. Thermal fatigue	3.1. Thermal stress and strain
	3.2. Crack growth and propagation
4. Fatigue of complex materials	4.1. Fatigue of complex materials
	4.2. Thermomechanical and dynamic mechanical analysis

	Planning			
Methodologies / tests	Competencies	Ordinary class	Student?s personal	Total hours
		hours	work hours	
Guest lecture / keynote speech	A1 A7 A8 B4 B7 B13	7	14	21
	C6 C7 C8			
Supervised projects	B2 B4 B7 B10 B13 C2	1	14	15
	C6 C7 C8			
Objective test	A7 A8 B2 B4 B7 C2	1	0	1
	C6			
Laboratory practice	A1 A7 A8 B2 B10 B13	4	8	12
Personalized attention		1	0	1
(*)The information in the planning table is fo	r guidance only and does not to	ake into account the	heterogeneity of the stud	lents.

	Methodologies
Methodologies	Description
Guest lecture / keynote speech	Presentation by the teacher of the concepts contained in the agenda of the subject.
Supervised projects	You can choose one of the following options: a) Performing a Bibliographical search in relation to recent research in the field related to the subject. b) Research using laboratory equipment. c) Simulation and modelization of fatigue processes by computer programs.
Objective test	Evaluation test
Laboratory practice	Practical activities such as computer practice, exercises, experiments, research, etc.

	Personalized attention
Methodologies	Description
Guest lecture /	Resolution of questions regarding any aspect of the subject.
keynote speech	
Supervised projects	No academic dispensation is accepted.
Laboratory practice	

		Assessment	
Methodologies	Competencies	Description	
Objective test	A7 A8 B2 B4 B7 C2	Assesment test.	20
	C6		
Guest lecture /	A1 A7 A8 B4 B7 B13	Continuous assessment through monitoring of student work in the classroom,	10
keynote speech	C6 C7 C8	laboratory and / or tutorials	
Supervised projects	B2 B4 B7 B10 B13 C2	Report will be assessed in relation to the work suggested to the student	40
	C6 C7 C8		
Laboratory practice	A1 A7 A8 B2 B10 B13	Continuous assessment through monitoring of student work in the classroom,	30
		laboratory and / or tutorials	

Assessment comments	
Academic dispensation will not be accepted.	
The evaluation criteria for the second opportunity and the extraordinary opportunity are the same as for the first opportunity.	

	Sources of information
Basic	- Weronski A., Hejwowski T. (1991). Thermal fatigue of metals. Marcel Dekker
	- Callister, W.D. (2007). Materials Science and Engineering. John Wiley & Dons
	- Bresser J., Rémy L. (1995). Fatigue under thermal and mechanical loading. Springer
	- Prime B., Menczel J. (2009). Thermal Analysis of Polymers, Fundamentals and Applications. Wiley
	- Strait, L. (1994). Thermo-mechanical fatigue of polymer matrix composites. The Pennsylvania State University,
	APPLIED RESEARCH LABORATORY
Complementary	

Recommendations
Subjects that it is recommended to have taken before
Subjects that are recommended to be taken simultaneously
Subjects that continue the syllabus
Other comments

To help to achieve a sustainable environment and meet the objective of action number 5: ?Healthy and sustainable environmental and social teaching and research? of the "Green Campus Ferrol Action Plan":1.- The delivery of the documentary works carried out in this subject:1.1. It will be requested in virtual format and/or computer support.1.2. It will be done through Moodle, in digital format without the need to print them.1.3. If done on paper:-Plastics will not be used.- Double-sided prints will be made.- Recycled paper will be used.- Draft printing will be avoided.2.- A sustainable use of resources and the prevention of negative impacts on the natural environment must be made.3.- The importance of ethical principles related to the values ??of sustainability in personal and professional behavior must be taken into account.4.- As it is included in the different regulations of application for university teaching, the gender perspective must be incorporated in this subject (non-sexist language will be used, bibliography of authors of both sexes will be used, intervention in student class will be encouraged and students...).5.- We will work to identify and modify prejudices and sexist attitudes, and the environment will be influenced to modify them and promote values ??of respect and equality.6. Situations of discrimination based on gender must be detected and actions and measures will be proposed to correct them.7. The full integration of students who, due to physical, sensorial, psychic or sociocultural reasons, experience difficulties in an ideal, egalitarian and profitable access to university life will be facilitated

(*)The teaching guide is the document in which the URV publishes the information about all its courses. It is a public document and cannot be modified. Only in exceptional cases can it be revised by the competent agent or duly revised so that it is in line with current legislation.